Multi-dimensional sets recognizable in all abstract numeration systems
Émilie Charlier; Anne Lacroix; Narad Rampersad
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2012)
- Volume: 46, Issue: 1, page 51-65
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topCharlier, Émilie, Lacroix, Anne, and Rampersad, Narad. "Multi-dimensional sets recognizable in all abstract numeration systems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 46.1 (2012): 51-65. <http://eudml.org/doc/273043>.
@article{Charlier2012,
abstract = {We prove that the subsets of that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets. This generalizes a result of Lecomte and Rigo in the one-dimensional setting.},
author = {Charlier, Émilie, Lacroix, Anne, Rampersad, Narad},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {finite automata; numeration systems; recognizable sets of integers; multi-dimensional setting; numeration system; regular language; finite automata.},
language = {eng},
number = {1},
pages = {51-65},
publisher = {EDP-Sciences},
title = {Multi-dimensional sets recognizable in all abstract numeration systems},
url = {http://eudml.org/doc/273043},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Charlier, Émilie
AU - Lacroix, Anne
AU - Rampersad, Narad
TI - Multi-dimensional sets recognizable in all abstract numeration systems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 1
SP - 51
EP - 65
AB - We prove that the subsets of that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets. This generalizes a result of Lecomte and Rigo in the one-dimensional setting.
LA - eng
KW - finite automata; numeration systems; recognizable sets of integers; multi-dimensional setting; numeration system; regular language; finite automata.
UR - http://eudml.org/doc/273043
ER -
References
top- [1] P.-Y. Angrand and J. Sakarovitch, Radix enumeration of rational languages. RAIRO–Theor. Inf. Appl. 44 (2010) 19–36. Zbl1186.68243MR2604933
- [2] V. Berthé, C. Frougny, M. Rigo and J. Sakarovitch, On the cost and complexity of the successor function, in Proceedings of WORDS 2007. P. Arnoux, N. Bédaride and J. Cassaigne Eds., CIRM, Luminy, Marseille (2007).
- [3] V. Bruyère, G. Hansel, C. Michaux and R. Villemaire, Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc.1 (1994) 191–238. Zbl0804.11024MR1318968
- [4] É. Charlier, T. Kärki and M. Rigo, Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discrete Math.310 (2010) 1238–1252. Zbl1231.05010MR2579856
- [5] A. Cobham, On the base-dependence of set of numbers recognizable by finite automata. Math. Syst. Theory3 (1969) 186–192. Zbl0179.02501MR250789
- [6] S. Eilenberg, Automata, languages, and machines A, Pure and Applied Mathematics 58. Academic Press, New York (1974). Zbl0317.94045MR530382
- [7] S. Eilenberg, C.C. Elgot and J.C. Shepherdson, Sets recognised by n-tape automata. J. Algebra13 (1969) 447–464. Zbl0207.02002MR249213
- [8] Ch. Frougny and J. Sakarovitch, Synchronized rational relations of finite and infinite words. Theoret. Comput. Sci.108 (1993) 45–82. Zbl0783.68065MR1203822
- [9] Ch. Frougny and J. Sakarovitch, Number representation and finite automata, in Combinatorics, Automata, and Number Theory, Encyclopedia of Mathematics and its Applications 135. V. Berthé and M. Rigo Eds., Cambridge (2010). Zbl1216.68142MR2766740
- [10] S. Ginsburg and E.H. Spanier, Semigroups, Presburger formulas and languages. Pac. J. Math. 16 (1966) 285–296. Zbl0143.01602MR191770
- [11] P. Lecomte and M. Rigo, Numeration systems on a regular language. Theor. Comput. Syst.34 (2001) 27–44. Zbl0969.68095MR1799066
- [12] P. Lecomte and M. Rigo, Abstract numeration systems, in Combinatorics, Automata, and Number Theory, Encyclopedia of Mathematics and its Applications 135. V. Berthé and M. Rigo Eds., Cambridge (2010). Zbl1216.68147MR2766741
- [13] J. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30. Oxford (2005). Zbl1134.11012
- [14] M. Rigo and A. Maes, More on generalized automatic sequences. J. Autom. Lang. Comb.7 (2002) 351–376. Zbl1033.68069MR1957696
- [15] S. Rubin, Automatic Structures. Ph.D. thesis, University of Auckland, New Zealand (2004). Zbl1058.68070
- [16] A.L. Semenov, The Presburger nature of predicates that are regular in two number systems. Sibirsk. Math. Ž. 18 (1977) 403–418, 479 (in Russian). English translation in Sib. J. Math. 18 (1977) 289–300. Zbl0369.02023MR450050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.