Fewest repetitions in infinite binary words
Golnaz Badkobeh; Maxime Crochemore
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 46, Issue: 1, page 17-31
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Badkobeh and M. Crochemore, An infinite binary word containing only three distinct squares (2010) Submitted.
- J.D. Currie and N. Rampersad, A proof of Dejean’s conjecture. Math. Comput.80 (2011) 1063–1070.
- F. Dejean, Sur un théorème de Thue. J. Comb. Theory, Ser. A13 (1972) 90–99.
- A.S. Fraenkel and J. Simpson, How many squares must a binary sequence contain? Electr. J. Comb.2 (1995).
- T. Harju and D. Nowotka, Binary words with few squares. Bulletin of the EATCS89 (2006) 164–166.
- J. Karhumäki and J. Shallit, Polynomial versus exponential growth in repetition-free binary words. J. Comb. Th. (A)105 (2004) 335–347.
- M. Lothaire Ed., Combinatorics on Words. Cambridge University Press, 2nd edition (1997).
- N. Rampersad, J. Shallit and M. Wei Wang, Avoiding large squares in infinite binary words. Theoret. Comput. Sci.339 (2005) 19–34.
- M. Rao, Last cases of Dejean’s conjecture. Theor. Comput. Sci.412 (2011) 3010–3018.
- J. Shallit, Simultaneous avoidance of large squares and fractional powers in infinite binary words. Int. J. Found. Comput. Sci.15 (2004) 317–327.
- A. Thue, Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana7 (1906) 1–22.