A note on constructing infinite binary words with polynomial subword complexity
Francine Blanchet-Sadri; Bob Chen; Sinziana Munteanu
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2013)
- Volume: 47, Issue: 2, page 195-199
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belgian Math. Soc.1 (1994) 133–143. Zbl0803.68094MR1318964
- [2] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). Zbl1086.11015MR1997038
- [3] P. Arnoux, C. Mauduit, I. Shiokawa and J. Tamura, Complexity of sequences defined by billiards in the cube. Bull. Soc. Math. France122 (1994) 1–12. Zbl0791.58034MR1259106
- [4] P. Arnoux, C. Mauduit, I. Shiokawa and J. Tamura, Rauzy’s conjecture on billiards in the cube. Tokyo J. Math.17 (1994) 211–218. Zbl0814.11014MR1279582
- [5] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991) 199–215. Zbl0789.28011MR1116845
- [6] Y. Baryshnikov, Complexity of trajectories in rectangular billiards. Communicat. Math. Phys.174 (1995) 43–56. Zbl0839.11006MR1372799
- [7] N. Bedaride, Directional billiard complexity in rational polyhedra. Regular Chaotic Dyn.3 (2003) 97–106. Zbl1023.37024MR1963971
- [8] F. Blanchet-Sadri, A. Chakarov, L. Manuelli, J. Schwartz and S. Stich, Constructing partial words with subword complexities not achievable by full words. Theoret. Comput. Sci.432 (2012) 21–27. Zbl1244.68063MR2914176
- [9] J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc.4 (1997) 67–88. Zbl0921.68065MR1440670
- [10] J. Cassaigne, Constructing infinite words of intermediate complexity. In DLT 2002, 6th International Conference on Developments in Language Theory, Kyoto, Japan. Springer-Verlag, Berlin. Lect. Notes Comput. Sci. 2450 (2003) 173–184. Zbl1015.68138MR2177342
- [11] J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms. European J. Combin.18 (1997) 497–510. Zbl0881.68065MR1455183
- [12] S. Ferenczi, Complexity of sequences and dynamical systems. Discrete Math.206 (1999) 145–154. Zbl0936.37008MR1665394
- [13] I. Gheorghiciuc, The subword complexity of a class of infinite binary words. Adv. Appl. Math.39 (2007) 237–259. Zbl1117.68059MR2333650
- [14] M. Koskas, Complexité des suites de Toeplitz. Discrete Math.183 (1998) 161–183. Zbl0895.11011
- [15] M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002). Zbl1221.68183MR1905123
- [16] M. Morse and G.A. Hedlund, Symbolic dynamics. Amer. J. Math.60 (1938) 815–866. Zbl0019.33502MR1507944JFM64.0798.04
- [17] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. Zbl0022.34003MR745JFM66.0188.03
- [18] G. Rote, Sequences with subword complexity 2n. J. Number Theory46 (1993) 196–213. Zbl0804.11023MR1269252