On the product of balanced sequences
Antonio Restivo; Giovanna Rosone
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2012)
- Volume: 46, Issue: 1, page 131-145
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Altman, B. Gaujal and A. Hordijk, Balanced sequences and optimal routing. J. ACM47 (2000) 752–775. Zbl1327.68180MR1866176
- [2] N. Chekhova, P. Hubert and A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux13 (2001) 371–394. Zbl1038.37010MR1879664
- [3] C. Choffrut and J. Karhumaki, Combinatorics of words, in G. Rozenberg and A. Salomaa eds., Handbook of Formal Language Theory 1. Springer-Verlag, Berlin (1997). MR1469998
- [4] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997) 146–161. Zbl0895.11029MR1486494
- [5] A.S. Fraenkel, Complementing and exactly covering sequences. J. Combin. Theory Ser. A14 (1973) 8–20. Zbl0257.05023MR309770
- [6] P. Hubert, Suites équilibrées (french). Theor. Comput. Sci.242 (2000) 91–108. Zbl0944.68149MR1769142
- [7] M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002). Zbl1221.68183MR1905123
- [8] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. Zbl0022.34003MR745JFM66.0188.03
- [9] R.N. Risley and L.Q. Zamboni, A generalization of sturmian sequences : combinatorial structure and transcendence. Acta Arith.95 (2000) 167–184. Zbl0953.11007MR1785413
- [10] P.V. Salimov, On uniform recurrence of a direct product. Discrete Math. Theoret. Comput. Sci.12 (2010) 1–8. Zbl1286.68377MR2760331
- [11] L. Vuillon, Balanced words. Bull. Belg. Math. Soc.10 (2003) 787–805. Zbl1070.68129MR2073026