# Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

Manuel Bernard; Stéphane Dellacherie; Gloria Faccanoni; Bérénice Grec; Yohan Penel

- Volume: 48, Issue: 6, page 1639-1679
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topBernard, Manuel, et al. "Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1639-1679. <http://eudml.org/doc/273112>.

@article{Bernard2014,

abstract = {In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.},

author = {Bernard, Manuel, Dellacherie, Stéphane, Faccanoni, Gloria, Grec, Bérénice, Penel, Yohan},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {low Mach number flows; modelling of phase transition; analytical solutions; method of characteristics; positivity-preserving schemes},

language = {eng},

number = {6},

pages = {1639-1679},

publisher = {EDP-Sciences},

title = {Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law},

url = {http://eudml.org/doc/273112},

volume = {48},

year = {2014},

}

TY - JOUR

AU - Bernard, Manuel

AU - Dellacherie, Stéphane

AU - Faccanoni, Gloria

AU - Grec, Bérénice

AU - Penel, Yohan

TI - Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2014

PB - EDP-Sciences

VL - 48

IS - 6

SP - 1639

EP - 1679

AB - In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.

LA - eng

KW - low Mach number flows; modelling of phase transition; analytical solutions; method of characteristics; positivity-preserving schemes

UR - http://eudml.org/doc/273112

ER -

## References

top- [1] TRACE V5.0 Theory Manual, Field Equations, Solution Methods and Physical Models. Technical report, U.S. Nuclear Regulatory Commission (2008).
- [2] A. Acrivos, Method of characteristics technique. Application to heat and mass transfer problems. Ind. Eng. Chem. 48 (1956) 703–710.
- [3] G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris Ser. I344 (2007) 135–140. Zbl1109.35066MR2288604
- [4] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922.
- [5] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927.
- [6] M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec, O. Lafitte, T.-T. Nguyen and Y. Penel. Study of low Mach nuclear core model for single-phase flow. ESAIM Proc.38 (2012) 118–134. Zbl1329.76248MR3006539
- [7] D. Bestion. The physical closure laws in the CATHARE code. Nucl. Eng. Des.124 (1990) 229–245.
- [8] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. 2nd edition. John Wiley and sons (1985). Zbl0095.23301
- [9] V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids4 (1984) 1001–1012. Zbl0549.76050
- [10] S. Clerc, Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows. J. Comput. Phys.181 (2002) 577–616. Zbl1169.76407MR1762085
- [11] P. Colella and K. Pao, A projection method for low speed flows. J. Comput. Phys.149 (1999) 245–269. Zbl0935.76056MR1672739
- [12] J.M. Delhaye, Thermohydraulique des réacteurs. EDP sciences (2008).
- [13] S. Dellacherie, On a diphasic low Mach number system. ESAIM: M2AN 39 (2005) 487–514. Zbl1075.35038MR2157147
- [14] S. Dellacherie, Numerical resolution of a potential diphasic low Mach number system. J. Comput. Phys.223 (2007) 151–187. Zbl1163.76035MR2314387
- [15] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys.229 (2010) 978–1016. Zbl1329.76228MR2576236
- [16] S. Dellacherie, On a low Mach nuclear core model. ESAIM Proc.35 (2012) 79–106. Zbl06023187MR3040775
- [17] S. Dellacherie, G. Faccanoni, B. Grec, F. Lagoutière, E. Nayir and Y. Penel, 2D numerical simulation of a low Mach nuclear core model with stiffened gas using Freefem++. ESAIM. Proc. (accepted). Zbl06537101
- [18] S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of low Mach nuclear core model for two-phase flows with phase transition II: tabulated EOS. In preparation.
- [19] M. Drouin, O. Grégoire and O. Simonin, A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media. Int. J. Heat Mass Transfer63 (2013) 401–413.
- [20] D.R. Durran, Numerical methods for fluid dynamics, With applications to Geophysics, vol. 32 of Texts in Applied Mathematics. Springer, 2nd edition. New York (2010). Zbl1214.76001MR2723959
- [21] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differ. Equ.12 (1987) 1227–1283. Zbl0632.76075MR888460
- [22] G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (2008).
- [23] G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 1029–1054 2012. Zbl1267.76110MR2916371
- [24] P. Fillion, A. Chanoine, S. Dellacherie and A. Kumbaro, FLICA-OVAP: A new platform for core thermal-hydraulic studies. Nucl. Eng. Des.241 (2011) 4348–4358.
- [25] E. Goncalvès and R.F. Patella, Numerical study of cavitating flows with thermodynamic effect. Comput. Fluids39 (2010) 99–113. Zbl1242.76331MR2600812
- [26] J.M. Gonzalez-Santalo and R.T. Jr Lahey, An exact solution for flow transients in two-phase systems by the method of characteristics. J. Heat Transfer95 (1973) 470–476.
- [27] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics. Springer (1997). Zbl0823.73001
- [28] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids28 (1999) 63–86. Zbl0963.76062MR1651839
- [29] S. Jaouen, Étude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001).
- [30] M.F. Lai, J.B. Bell and P. Colella. A projection method for combustion in the zero Mach number limit, in Proc. of 11th AIAA Comput. Fluid Dyn. Conf. (1993) 776–783.
- [31] O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265–276,.
- [32] O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys.205 (2005) 567–610. Zbl1088.76051MR2134994
- [33] E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg MD, 20899.
- [34] A. Majda and K.G. Lamb, Simplified equations for low Mach number combustion with strong heat release, Dynamical issues in combustion theory, vol. 35 of IMA Vol. Math. Appl. Springer-Verlag (1991). Zbl0751.76068MR1119793
- [35] A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol.42 (1985) 185–205.
- [36] R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Modern Phys.61 (1989) 75–130. Zbl1129.35439MR977944
- [37] S. Müller and A. Voss, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput.28 (2006) 651–681. Zbl1114.35127MR2231725
- [38] Y. Penel, An explicit stable numerical scheme for the 1D transport equation. Discrete Contin. Dyn. Syst. Ser. S5 (2012) 641–656. Zbl1244.65131MR2861831
- [39] Y. Penel, Existence of global solutions to the 1D abstract bubble vibration model. Differ. Integral Equ.26 (2013) 59–80. Zbl1289.35262MR3058697
- [40] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech.607 (2008) 313–350. Zbl1147.76060MR2436919
- [41] G.I. Sivashinsky, Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronaut.6 (1979) 631–645. Zbl0397.76062
- [42] G. Volpe, Performance of compressible flow codes at low Mach numbers. AIAA J.31 (1993) 49–56. Zbl0775.76140
- [43] A. Voss, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state. Ph.D. thesis, RWTH Aachen (2005). Zbl1114.35127
- [44] N. Zuber, Flow excursions and oscillations in boiling, two-phase flow systems with heat addition, in Symposium on Two-phase Flow Dynamics, Eindhoven EUR4288e (1967) 1071–1089.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.