Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

Manuel Bernard; Stéphane Dellacherie; Gloria Faccanoni; Bérénice Grec; Yohan Penel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 6, page 1639-1679
  • ISSN: 0764-583X

Abstract

top
In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.

How to cite

top

Bernard, Manuel, et al. "Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.6 (2014): 1639-1679. <http://eudml.org/doc/273112>.

@article{Bernard2014,
abstract = {In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.},
author = {Bernard, Manuel, Dellacherie, Stéphane, Faccanoni, Gloria, Grec, Bérénice, Penel, Yohan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {low Mach number flows; modelling of phase transition; analytical solutions; method of characteristics; positivity-preserving schemes},
language = {eng},
number = {6},
pages = {1639-1679},
publisher = {EDP-Sciences},
title = {Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law},
url = {http://eudml.org/doc/273112},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Bernard, Manuel
AU - Dellacherie, Stéphane
AU - Faccanoni, Gloria
AU - Grec, Bérénice
AU - Penel, Yohan
TI - Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 6
SP - 1639
EP - 1679
AB - In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.
LA - eng
KW - low Mach number flows; modelling of phase transition; analytical solutions; method of characteristics; positivity-preserving schemes
UR - http://eudml.org/doc/273112
ER -

References

top
  1. [1] TRACE V5.0 Theory Manual, Field Equations, Solution Methods and Physical Models. Technical report, U.S. Nuclear Regulatory Commission (2008). 
  2. [2] A. Acrivos, Method of characteristics technique. Application to heat and mass transfer problems. Ind. Eng. Chem. 48 (1956) 703–710. 
  3. [3] G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris Ser. I344 (2007) 135–140. Zbl1109.35066MR2288604
  4. [4] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922. 
  5. [5] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927. 
  6. [6] M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec, O. Lafitte, T.-T. Nguyen and Y. Penel. Study of low Mach nuclear core model for single-phase flow. ESAIM Proc.38 (2012) 118–134. Zbl1329.76248MR3006539
  7. [7] D. Bestion. The physical closure laws in the CATHARE code. Nucl. Eng. Des.124 (1990) 229–245. 
  8. [8] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. 2nd edition. John Wiley and sons (1985). Zbl0095.23301
  9. [9] V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids4 (1984) 1001–1012. Zbl0549.76050
  10. [10] S. Clerc, Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows. J. Comput. Phys.181 (2002) 577–616. Zbl1169.76407MR1762085
  11. [11] P. Colella and K. Pao, A projection method for low speed flows. J. Comput. Phys.149 (1999) 245–269. Zbl0935.76056MR1672739
  12. [12] J.M. Delhaye, Thermohydraulique des réacteurs. EDP sciences (2008). 
  13. [13] S. Dellacherie, On a diphasic low Mach number system. ESAIM: M2AN 39 (2005) 487–514. Zbl1075.35038MR2157147
  14. [14] S. Dellacherie, Numerical resolution of a potential diphasic low Mach number system. J. Comput. Phys.223 (2007) 151–187. Zbl1163.76035MR2314387
  15. [15] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys.229 (2010) 978–1016. Zbl1329.76228MR2576236
  16. [16] S. Dellacherie, On a low Mach nuclear core model. ESAIM Proc.35 (2012) 79–106. Zbl06023187MR3040775
  17. [17] S. Dellacherie, G. Faccanoni, B. Grec, F. Lagoutière, E. Nayir and Y. Penel, 2D numerical simulation of a low Mach nuclear core model with stiffened gas using Freefem++. ESAIM. Proc. (accepted). Zbl06537101
  18. [18] S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of low Mach nuclear core model for two-phase flows with phase transition II: tabulated EOS. In preparation. 
  19. [19] M. Drouin, O. Grégoire and O. Simonin, A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media. Int. J. Heat Mass Transfer63 (2013) 401–413. 
  20. [20] D.R. Durran, Numerical methods for fluid dynamics, With applications to Geophysics, vol. 32 of Texts in Applied Mathematics. Springer, 2nd edition. New York (2010). Zbl1214.76001MR2723959
  21. [21] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differ. Equ.12 (1987) 1227–1283. Zbl0632.76075MR888460
  22. [22] G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (2008). 
  23. [23] G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 1029–1054 2012. Zbl1267.76110MR2916371
  24. [24] P. Fillion, A. Chanoine, S. Dellacherie and A. Kumbaro, FLICA-OVAP: A new platform for core thermal-hydraulic studies. Nucl. Eng. Des.241 (2011) 4348–4358. 
  25. [25] E. Goncalvès and R.F. Patella, Numerical study of cavitating flows with thermodynamic effect. Comput. Fluids39 (2010) 99–113. Zbl1242.76331MR2600812
  26. [26] J.M. Gonzalez-Santalo and R.T. Jr Lahey, An exact solution for flow transients in two-phase systems by the method of characteristics. J. Heat Transfer95 (1973) 470–476. 
  27. [27] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics. Springer (1997). Zbl0823.73001
  28. [28] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids28 (1999) 63–86. Zbl0963.76062MR1651839
  29. [29] S. Jaouen, Étude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001). 
  30. [30] M.F. Lai, J.B. Bell and P. Colella. A projection method for combustion in the zero Mach number limit, in Proc. of 11th AIAA Comput. Fluid Dyn. Conf. (1993) 776–783. 
  31. [31] O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265–276,. 
  32. [32] O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys.205 (2005) 567–610. Zbl1088.76051MR2134994
  33. [33] E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg MD, 20899. 
  34. [34] A. Majda and K.G. Lamb, Simplified equations for low Mach number combustion with strong heat release, Dynamical issues in combustion theory, vol. 35 of IMA Vol. Math. Appl. Springer-Verlag (1991). Zbl0751.76068MR1119793
  35. [35] A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol.42 (1985) 185–205. 
  36. [36] R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Modern Phys.61 (1989) 75–130. Zbl1129.35439MR977944
  37. [37] S. Müller and A. Voss, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput.28 (2006) 651–681. Zbl1114.35127MR2231725
  38. [38] Y. Penel, An explicit stable numerical scheme for the 1D transport equation. Discrete Contin. Dyn. Syst. Ser. S5 (2012) 641–656. Zbl1244.65131MR2861831
  39. [39] Y. Penel, Existence of global solutions to the 1D abstract bubble vibration model. Differ. Integral Equ.26 (2013) 59–80. Zbl1289.35262MR3058697
  40. [40] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech.607 (2008) 313–350. Zbl1147.76060MR2436919
  41. [41] G.I. Sivashinsky, Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronaut.6 (1979) 631–645. Zbl0397.76062
  42. [42] G. Volpe, Performance of compressible flow codes at low Mach numbers. AIAA J.31 (1993) 49–56. Zbl0775.76140
  43. [43] A. Voss, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state. Ph.D. thesis, RWTH Aachen (2005). Zbl1114.35127
  44. [44] N. Zuber, Flow excursions and oscillations in boiling, two-phase flow systems with heat addition, in Symposium on Two-phase Flow Dynamics, Eindhoven EUR4288e (1967) 1071–1089. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.