Reduced resistive MHD in Tokamaks with general density
- Volume: 46, Issue: 5, page 1081-1106
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Allaire, Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation in Numerical Mathematics and Scientific Computation series. Oxford University Press (2007). Zbl1120.65001MR2326223
- [2] D. Biskamp, Nonlinear Magnetohydrodynamics. Cambridge University Press (1992). MR1250152
- [3] J. Blum, Numerical simulation and optimal control in plasma physics, with application to Tokamaks. Series in Modern Applied Mathematics. Wiley/Gauthier-Villard (1989). Zbl0717.76009MR996236
- [4] J. Blum, Numerical identification of the plasma current density in a Tokamak fusion reactor : the determination of a non-linear source in an elliptic pde, invited conference, in Proceedings of PICOF02. Carthage, Tunisie (2002).
- [5] J. Blum, T. Gallouet and J. Simon, Existence and control of plasma equilibirum in a Tokamak. SIAM J. Math. Anal.17 (1986) 1158–1177. Zbl0614.35082MR853522
- [6] J. Blum, C. Boulbe and B. Faugeras, Real time reconstruction of plasma equilibrium in a Tokamak, International conference on burning plasma diagnostics. Villa Manoastero, Varenna (2007). Zbl06039412
- [7] H. Brezis and H. Berestycki, On a free boundary problem arising in plasma physics. Nonlinear Anal.4 (1980) 415–436. Zbl0437.35032MR574364
- [8] S. Briguglio, G. Wad, F. Zonca and C. Kar, Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes. Phys. Plasmas2 (1995) 3711–3723.
- [9] S. Briguglio, F. Zonca and C. Kar, Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks. Phys. Plasmas5 (1998) 3287–3301.
- [10] L.A. Caffarelli and S. Salsa, A geometric approach to free boundary problems, Graduate Studies in Mathematics. AMS, Providence, RI 68 (2005). Zbl1083.35001
- [11] F. Chen, Introduction to plasma physics and controlled fusion. Springer, New York (1984).
- [12] O. Czarny and G. Huysmans, MHD stability in X-point geometry : simulation of ELMs. Nucl. Fusion47 (2007) 659–666.
- [13] O. Czarny and G. Huysmans, Bézier surfaces and finite elements for MHD simulations. J. Comput. Phys.227 (2008) 7423–7445. Zbl1141.76035MR2437577
- [14] E. Deriaz, B. Després, G. Faccanoni, K.P. Gostaf, L.-M. Imbert-Gérard, G. Sadaka and R. Sart, Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole. ESAIM Proc.32 (2011) 76–94. Zbl1235.76064MR2862440
- [15] J.I. Diaz and J.F. Padial, On a free-boundary problem modeling the action of a limiter on a plasma. Discrete Contin. Dyn. Syst. Suppl. (2007) 313–322. Zbl1163.35400MR2409226
- [16] J.I. Diaz and J.-M. Rakotoson, On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 353–359. Zbl0783.76106MR1235448
- [17] E. Feireisl, Dynamics of viscous compressible fluids. Oxford University Press (2004). Zbl1080.76001MR2040667
- [18] J. Freidberg, Plasma physics and fusion energy. Cambridge (2007).
- [19] A. Friedman, Variational principles and free-boundary problems. Wiley-interscience publication, Wiley, New York (1982). Zbl0564.49002MR679313
- [20] T. Fujita, Tokamak equilibria with nearly zero central current : the current hole (review article). Nucl. Fusion 50 (2010).
- [21] T. Fujita, T. Oikawa, T. Suzuki, S. Ide, Y. Sakamoto, Y. Koide, T. Hatae, O. Naito, A. Isayama, N. Hayashi and H. Shirai, Plasma equilibrium and confinement in a Tokamak with nearly zero central current density in JT-60U. Phys. Rev. Lett.87 (2001) 245001–245005.
- [22] J.F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, USA (2006). Zbl1107.76001MR2289481
- [23] G. Huysmans, T.C. Hender, N.C. Hawkes and X. Litaudon, MHD stability of advanced Tokamak scenarios with reversed central current : an explanation of the “Current Hole”. Phys. Rev. Lett.87 (2001) 245002–245006.
- [24] G.T.A. Huysmans, S. Pamela, E. van der Plas and P. Ramet, Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 51 (2009) 124012.
- [25] B.B. Kadomtsev and O.P. Pogutse, Non linear helical perturbations of a plasma in a Tokamak. Sov. Phys.-JETP38 (1974) 283–290.
- [26] S.-E. Kruger, C.C. Hegna and J.D. Callen, Generalized reduced magnetohydrodynamic equations. Phys. Plasmas5 (1998) 4169–4183. MR1656032
- [27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Études Mathématiques. Dunod (1969). Zbl0189.40603
- [28] P.-L. Lions, Mathematical topics in fluid mechanics. Incompressible models, edited by Oxford Science Publication 1 (1996). Zbl0866.76002MR1422251
- [29] P.-L. Lions, Mathematical topics in fluid mechanics. Compressible models, edited by Oxford Science Publication 2 (1998). Zbl0908.76004MR1637634
- [30] H. Lütjens and J.-F. Luciani, The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys.227 (2008) 6944–6966. Zbl05303093MR2435437
- [31] H. Lütjens and J.-F. Luciani, XTOR-2F : A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys.229 (2010) 8130–8143. Zbl1220.76055MR2719164
- [32] K. Miyamoto, Plasma physics and controlled nuclear fusion. Springer (2005). Zbl1276.81126
- [33] B. Nkonga, Private communication (2010).
- [34] M.N. Rosenbluth, D.A. Monticello, H.R. Strauss and R.B. White, Dynamics of high β plasmas. Phys. Fluids 19 (1976) 1987.
- [35] R. Smaltz, Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects. Phys. Lett. A82 (1981) 14–17.
- [36] H.R. Strauss, Nonlinear three-dimensional magnetohydrodynamics of noncircular Tokamaks. Phys. Fluids19 (1976) 134–140.
- [37] H.R. Strauss, Dynamics of high β plasmas. Phys. Fluids20 (1977) 1354–1360.
- [38] R. Temam, Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ.2 (1977) 563–585. Zbl0355.35023MR602544
- [39] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (1979). Zbl0426.35003MR603444
- [40] Z. Yoshida, S.M. Mahajan, S. Ohsaki, M. Iqbal and N. Shatashvili, Beltrami fields in plasmas : High-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (2001) 2125.
- [41] Z. Yoshida et al., Potential Control and Flow Generation in a Toroidal Internal-Coil System – a New Approach to High-beta Equilibrium, in 20th IAEA Fusion Energy Conference. Online at http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/icp6-16.pdf (2004).