Reduced resistive MHD in Tokamaks with general density

Bruno Després; Rémy Sart

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2012)

  • Volume: 46, Issue: 5, page 1081-1106
  • ISSN: 0764-583X

Abstract

top
The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

How to cite

top

Després, Bruno, and Sart, Rémy. "Reduced resistive MHD in Tokamaks with general density." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.5 (2012): 1081-1106. <http://eudml.org/doc/273117>.

@article{Després2012,
abstract = {The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.},
author = {Després, Bruno, Sart, Rémy},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {tokamaks; reduced magnetohydrodynamics},
language = {eng},
number = {5},
pages = {1081-1106},
publisher = {EDP-Sciences},
title = {Reduced resistive MHD in Tokamaks with general density},
url = {http://eudml.org/doc/273117},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Després, Bruno
AU - Sart, Rémy
TI - Reduced resistive MHD in Tokamaks with general density
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 5
SP - 1081
EP - 1106
AB - The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.
LA - eng
KW - tokamaks; reduced magnetohydrodynamics
UR - http://eudml.org/doc/273117
ER -

References

top
  1. [1] G. Allaire, Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation in Numerical Mathematics and Scientific Computation series. Oxford University Press (2007). Zbl1120.65001MR2326223
  2. [2] D. Biskamp, Nonlinear Magnetohydrodynamics. Cambridge University Press (1992). MR1250152
  3. [3] J. Blum, Numerical simulation and optimal control in plasma physics, with application to Tokamaks. Series in Modern Applied Mathematics. Wiley/Gauthier-Villard (1989). Zbl0717.76009MR996236
  4. [4] J. Blum, Numerical identification of the plasma current density in a Tokamak fusion reactor : the determination of a non-linear source in an elliptic pde, invited conference, in Proceedings of PICOF02. Carthage, Tunisie (2002). 
  5. [5] J. Blum, T. Gallouet and J. Simon, Existence and control of plasma equilibirum in a Tokamak. SIAM J. Math. Anal.17 (1986) 1158–1177. Zbl0614.35082MR853522
  6. [6] J. Blum, C. Boulbe and B. Faugeras, Real time reconstruction of plasma equilibrium in a Tokamak, International conference on burning plasma diagnostics. Villa Manoastero, Varenna (2007). Zbl06039412
  7. [7] H. Brezis and H. Berestycki, On a free boundary problem arising in plasma physics. Nonlinear Anal.4 (1980) 415–436. Zbl0437.35032MR574364
  8. [8] S. Briguglio, G. Wad, F. Zonca and C. Kar, Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes. Phys. Plasmas2 (1995) 3711–3723. 
  9. [9] S. Briguglio, F. Zonca and C. Kar, Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks. Phys. Plasmas5 (1998) 3287–3301. 
  10. [10] L.A. Caffarelli and S. Salsa, A geometric approach to free boundary problems, Graduate Studies in Mathematics. AMS, Providence, RI 68 (2005). Zbl1083.35001
  11. [11] F. Chen, Introduction to plasma physics and controlled fusion. Springer, New York (1984). 
  12. [12] O. Czarny and G. Huysmans, MHD stability in X-point geometry : simulation of ELMs. Nucl. Fusion47 (2007) 659–666. 
  13. [13] O. Czarny and G. Huysmans, Bézier surfaces and finite elements for MHD simulations. J. Comput. Phys.227 (2008) 7423–7445. Zbl1141.76035MR2437577
  14. [14] E. Deriaz, B. Després, G. Faccanoni, K.P. Gostaf, L.-M. Imbert-Gérard, G. Sadaka and R. Sart, Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole. ESAIM Proc.32 (2011) 76–94. Zbl1235.76064MR2862440
  15. [15] J.I. Diaz and J.F. Padial, On a free-boundary problem modeling the action of a limiter on a plasma. Discrete Contin. Dyn. Syst. Suppl. (2007) 313–322. Zbl1163.35400MR2409226
  16. [16] J.I. Diaz and J.-M. Rakotoson, On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 353–359. Zbl0783.76106MR1235448
  17. [17] E. Feireisl, Dynamics of viscous compressible fluids. Oxford University Press (2004). Zbl1080.76001MR2040667
  18. [18] J. Freidberg, Plasma physics and fusion energy. Cambridge (2007). 
  19. [19] A. Friedman, Variational principles and free-boundary problems. Wiley-interscience publication, Wiley, New York (1982). Zbl0564.49002MR679313
  20. [20] T. Fujita, Tokamak equilibria with nearly zero central current : the current hole (review article). Nucl. Fusion 50 (2010). 
  21. [21] T. Fujita, T. Oikawa, T. Suzuki, S. Ide, Y. Sakamoto, Y. Koide, T. Hatae, O. Naito, A. Isayama, N. Hayashi and H. Shirai, Plasma equilibrium and confinement in a Tokamak with nearly zero central current density in JT-60U. Phys. Rev. Lett.87 (2001) 245001–245005. 
  22. [22] J.F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, USA (2006). Zbl1107.76001MR2289481
  23. [23] G. Huysmans, T.C. Hender, N.C. Hawkes and X. Litaudon, MHD stability of advanced Tokamak scenarios with reversed central current : an explanation of the “Current Hole”. Phys. Rev. Lett.87 (2001) 245002–245006. 
  24. [24] G.T.A. Huysmans, S. Pamela, E. van der Plas and P. Ramet, Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 51 (2009) 124012. 
  25. [25] B.B. Kadomtsev and O.P. Pogutse, Non linear helical perturbations of a plasma in a Tokamak. Sov. Phys.-JETP38 (1974) 283–290. 
  26. [26] S.-E. Kruger, C.C. Hegna and J.D. Callen, Generalized reduced magnetohydrodynamic equations. Phys. Plasmas5 (1998) 4169–4183. MR1656032
  27. [27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Études Mathématiques. Dunod (1969). Zbl0189.40603
  28. [28] P.-L. Lions, Mathematical topics in fluid mechanics. Incompressible models, edited by Oxford Science Publication 1 (1996). Zbl0866.76002MR1422251
  29. [29] P.-L. Lions, Mathematical topics in fluid mechanics. Compressible models, edited by Oxford Science Publication 2 (1998). Zbl0908.76004MR1637634
  30. [30] H. Lütjens and J.-F. Luciani, The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys.227 (2008) 6944–6966. Zbl05303093MR2435437
  31. [31] H. Lütjens and J.-F. Luciani, XTOR-2F : A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys.229 (2010) 8130–8143. Zbl1220.76055MR2719164
  32. [32] K. Miyamoto, Plasma physics and controlled nuclear fusion. Springer (2005). Zbl1276.81126
  33. [33] B. Nkonga, Private communication (2010). 
  34. [34] M.N. Rosenbluth, D.A. Monticello, H.R. Strauss and R.B. White, Dynamics of high β plasmas. Phys. Fluids 19 (1976) 1987. 
  35. [35] R. Smaltz, Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects. Phys. Lett. A82 (1981) 14–17. 
  36. [36] H.R. Strauss, Nonlinear three-dimensional magnetohydrodynamics of noncircular Tokamaks. Phys. Fluids19 (1976) 134–140. 
  37. [37] H.R. Strauss, Dynamics of high β plasmas. Phys. Fluids20 (1977) 1354–1360. 
  38. [38] R. Temam, Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ.2 (1977) 563–585. Zbl0355.35023MR602544
  39. [39] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (1979). Zbl0426.35003MR603444
  40. [40] Z. Yoshida, S.M. Mahajan, S. Ohsaki, M. Iqbal and N. Shatashvili, Beltrami fields in plasmas : High-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (2001) 2125. 
  41. [41] Z. Yoshida et al., Potential Control and Flow Generation in a Toroidal Internal-Coil System – a New Approach to High-beta Equilibrium, in 20th IAEA Fusion Energy Conference. Online at http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/icp6-16.pdf (2004). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.