Formal passage from kinetic theory to incompressible Navier–Stokes equations for a mixture of gases
Marzia Bisi; Laurent Desvillettes
- Volume: 48, Issue: 4, page 1171-1197
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Alazard, Low Mach number limit of the full Navier–Stokes equations. Arch. Rational Mech. Anal.180 (2006) 1–73. Zbl1108.76061MR2211706
- [2] D. Arsenio, From Boltzmann’s equation to the incompressible Navier−Stokes–Fourier system with long-range interactions. Arch. Ration. Mech. Anal. 206 (2012) 367–488. Zbl1257.35140MR2980526
- [3] C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Statis. Phys. 63 (1991) 323–344. Zbl1151.35066MR1115587
- [4] C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46 (1993) 667–753. Zbl0817.76002MR1213991
- [5] S. Bastea, R. Esposito, J.L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction. I. Derivation of kinetic and hydrodynamic equations. J. Statis. Phys. 101 (2000) 1087–1136. Zbl0989.82025MR1806716
- [6] B.J. Bayly, D. Levermore and T. Passot, Density variations in weakly compressible flows. Phys. Fluids A4 (1992) 945–954. Zbl0756.76061MR1160287
- [7] A. Berti, V. Berti and D. Grandi, Well–posedness of an isothermal diffusive model for binary mixtures of incompressible fluids. Nonlinearity24 (2011) 3143–3164. Zbl1269.35029MR2844832
- [8] M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures. Appl. Math.50 (2005) 43–62. Zbl1099.82015MR2117695
- [9] M. Bisi, M. Groppi and G. Spiga, Kinetic Modelling of Bimolecular Chemical Reactions, Kinetic Methods for Nonconservative and Reacting Systems. Quaderni di Matematica [Math. Ser.], vol. 16. Edited by G. Toscani. Aracne Editrice, Roma (2005) 1–143. Zbl1121.82032MR2244535
- [10] M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Statis. Phys.124 (2006) 881–912. Zbl1134.82323MR2264629
- [11] M. Bisi, G. Martalò and G. Spiga, Multi-temperature Euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions. Europhys. Lett. 95 (2011), 55002.
- [12] L. Boudin, B. Grec, M. Pavic and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models6 (2013) 137–157. Zbl1260.35100MR3005625
- [13] S. Brull, Habilitation thesis. Univ. Bordeaux (2012).
- [14] S. Brull, V. Pavan and J. Schneider, Derivation of BGK models for mixtures. Eur. J. Mech. B-Fluids33 (2012) 74–86. Zbl1258.76122MR2896732
- [15] C. Cercignani, The Boltzmann Equation and its Applications. Springer, New York (1988). Zbl0646.76001MR1313028
- [16] V. Giovangigli, Multicomponent flow modeling, Series on Modeling and Simulation in Science, Engineering and Technology. Birkhaüser, Boston (1999). Zbl0956.76003MR1713516
- [17] F. Golse and L. Saint-Raymond, The Navier−Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155 (2004) 81–161. Zbl1060.76101MR2025302
- [18] F. Golse and L. Saint-Raymond, The incompressible Navier−Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. 91 (2009) 508–552. Zbl1178.35290MR2517786
- [19] H. Grad, Asymptotic theory of the Boltzmann equation. Phys. Fluids6 (1963) 147–181. Zbl0115.45006MR155541
- [20] H. Grad, Asymptotic theory of the Boltzmann equation II, Rarefied Gas Dynamics. Proc. of 3rd Int. Sympos. Academic Press, New York I (1963) 26–59. Zbl0115.45006MR156656
- [21] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, New York (1966). Zbl0435.47001MR203473
- [22] D. Levermore and N. Masmoudi, From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Arch. Rational Mech. Anal.196 (2010) 753–809. Zbl1304.35476MR2644440
- [23] P.L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl.77 (1998) 585–627. Zbl0909.35101MR1628173
- [24] P.L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics II. Arch. Rational Mech. Anal.158 (2001) 195–211. Zbl0987.76088MR1842343
- [25] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A. Math. Phys. Eng. Sci.454 (1998) 2617–2654. Zbl0927.76007MR1650795
- [26] L. Saint-Raymond, Some recent results about the sixth problem of Hilbert. Analysis and simulation of fluid dynamics. Adv. Math. Fluid Mech. Birkhäuser, Basel (2007) 183–199. Zbl1291.35126MR2331340
- [27] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation. Vol. 1971 of Lect. Notes Math. Springer-Verlag, Berlin (2009). Zbl1171.82002MR2683475
- [28] L. Saint-Raymond, Some recent results about the sixth problem of Hilbert: hydrodynamic limits of the Boltzmann equation, European Congress of Mathematics. Eur. Math. Soc. Zürich (2010) 419–439. Zbl1229.35163MR2648335
- [29] E.A. Spiegel and G. Veronis, On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131 442–447. MR128767
- [30] A. Vorobev, Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. Phys. Rev. E 85 (2010) 056312.