Coarse quantization for random interleaved sampling of bandlimited signals
Alexander M. Powell; Jared Tanner; Yang Wang; Özgür Yılmaz
- Volume: 46, Issue: 3, page 605-618
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topPowell, Alexander M., et al. "Coarse quantization for random interleaved sampling of bandlimited signals." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.3 (2012): 605-618. <http://eudml.org/doc/273138>.
@article{Powell2012,
abstract = {The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta analog-to-digital conversion is investigated. Let f be a bandlimited signal that is sampled on a collection of N interleaved grids \{kT + Tn\} k ∈ Zwith offsets $\lbrace T_n\rbrace _\{n=1\}^N\subset [0,T]$ T n n = 1 N ⊂ [ 0 ,T ] . If the offsetsTn are chosen independently and uniformly at random from [0,T] and if the sample values of fare quantized with a first order Sigma-Delta algorithm, then with high probability the quantization error $|f(t) - \widetilde\{f\}(t)|$ | f ( t ) − x10ff65; f ( t ) | is at most of orderN-1log N.},
author = {Powell, Alexander M., Tanner, Jared, Wang, Yang, Yılmaz, Özgür},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {analog-to-digital conversion; bandlimited signals; interleaved sampling; random sampling; sampling expansions; sigma-delta quantization},
language = {eng},
number = {3},
pages = {605-618},
publisher = {EDP-Sciences},
title = {Coarse quantization for random interleaved sampling of bandlimited signals},
url = {http://eudml.org/doc/273138},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Powell, Alexander M.
AU - Tanner, Jared
AU - Wang, Yang
AU - Yılmaz, Özgür
TI - Coarse quantization for random interleaved sampling of bandlimited signals
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 3
SP - 605
EP - 618
AB - The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta analog-to-digital conversion is investigated. Let f be a bandlimited signal that is sampled on a collection of N interleaved grids {kT + Tn} k ∈ Zwith offsets $\lbrace T_n\rbrace _{n=1}^N\subset [0,T]$ T n n = 1 N ⊂ [ 0 ,T ] . If the offsetsTn are chosen independently and uniformly at random from [0,T] and if the sample values of fare quantized with a first order Sigma-Delta algorithm, then with high probability the quantization error $|f(t) - \widetilde{f}(t)|$ | f ( t ) − x10ff65; f ( t ) | is at most of orderN-1log N.
LA - eng
KW - analog-to-digital conversion; bandlimited signals; interleaved sampling; random sampling; sampling expansions; sigma-delta quantization
UR - http://eudml.org/doc/273138
ER -
References
top- [1] R.F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal.36 (2005) 773–795. Zbl1096.94008MR2111915
- [2] J.J. Benedetto, A.M. Powell and Ö. Yılmaz, Sigma-delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory52 (2006) 1990–2005. Zbl1285.94014
- [3] I. Daubechies and R. DeVore, Reconstructing a bandlimited function from very coarsely quantized data : A family of stable sigma-delta modulators of arbitrary order. Ann. Math.158 (2003) 679–710. Zbl1058.94004MR2018933
- [4] H.A. David and H.N. Nagarja, Order Statistics, 3th edition. John Wiley & Sons, Hoboken, NJ (2003). Zbl0223.62057
- [5] L. Devroye, Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab.9 (1981) 860–867. Zbl0465.60038MR628878
- [6] R. Gervais, Q.I. Rahman and G. Schmeisser, A bandlimited function simulating a duration-limited one, in Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), Internationale Schriftenreihe zur Numerischen Mathematik 65. Birkhäuser, Basel (1984) 355–362. Zbl0547.41016MR820536
- [7] C.S. Güntürk, Approximating a bandlimited function using very coarsely quantized data : improved error estimates in sigma-delta modulation. J. Amer. Math. Soc.17 (2004) 229–242. Zbl1032.94502MR2015335
- [8] S. Huestis, Optimum kernels for oversampled signals. J. Acoust. Soc. Amer.92 (1992) 1172–1173.
- [9] S. Kunis and H. Rauhut, Random sampling of sparse trigonometric polynomials II. orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8 (2008) 737–763. Zbl1165.94314MR2461245
- [10] F. Natterer, Efficient evaluation of oversampled functions. J. Comput. Appl. Math.14 (1986) 303–309. Zbl0632.65142MR831076
- [11] R.A. Niland, Optimum oversampling. J. Acoust. Soc. Amer.86 (1989) 1805–1812. MR1020409
- [12] E. Slud, Entropy and maximal spacings for random partitions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41 (1977/78) 341–352. Zbl0353.60019MR488242
- [13] T. Strohmer and J. Tanner, Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal.44 (2006) 1073–1094. Zbl1118.42010MR2231856
- [14] C. Vogel and H. Johansson, Time-interleaved analog-to-digital converters : Status and future directions. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006) 3386–3389.
- [15] J. Xu and T. Strohmer, Efficient calibration of time-interleaved adcs via separable nonlinear least squares. Technical Report, Dept. of Mathematics, University of California at Davis. http://www.math.ucdavis.edu/-strotimer/papers/2006/adc.pdf
- [16] Ö. Yılmaz, Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmonic Anal.14 (2003) 107–132. Zbl1027.94515MR1981204
- [17] A.I. Zayed, Advances in Shannon’s sampling theory. CRC Press, Boca Raton (1993). Zbl0868.94011MR1270907
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.