The discrete compactness property for anisotropic edge elements on polyhedral domains
- Volume: 47, Issue: 1, page 169-181
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLombardi, Ariel Luis. "The discrete compactness property for anisotropic edge elements on polyhedral domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.1 (2013): 169-181. <http://eudml.org/doc/273139>.
@article{Lombardi2013,
abstract = {We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are appropriately graded near singular corners and edges of the polyhedron.},
author = {Lombardi, Ariel Luis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {discrete compactness property; edge elements; anisotropic finite elements; Maxwell equations},
language = {eng},
number = {1},
pages = {169-181},
publisher = {EDP-Sciences},
title = {The discrete compactness property for anisotropic edge elements on polyhedral domains},
url = {http://eudml.org/doc/273139},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Lombardi, Ariel Luis
TI - The discrete compactness property for anisotropic edge elements on polyhedral domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 1
SP - 169
EP - 181
AB - We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are appropriately graded near singular corners and edges of the polyhedron.
LA - eng
KW - discrete compactness property; edge elements; anisotropic finite elements; Maxwell equations
UR - http://eudml.org/doc/273139
ER -
References
top- [1] T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci.21 (1998) 519–549. Zbl0911.65107MR1615426
- [2] D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math.87 (2000) 229–246. Zbl0967.65106MR1804657
- [3] D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer.19 (2010) 1–120. Zbl1242.65110MR2652780
- [4] A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math.101 (2005) 29–65. Zbl1116.78020MR2194717
- [5] S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal.38 (2000) 580–607. Zbl1005.78012MR1770063
- [6] S. Caorsi, P. Fernandes and M. Raffetto, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal.35 (2001) 331–354. Zbl0993.78016MR1825702
- [7] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
- [8] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11 (2002) 237–339. Zbl1123.78320MR2009375
- [9] F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math.36 (1989) 479–490. Zbl0698.65067MR1039483
- [10] M. Krízek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal.29 (1992) 513–520. Zbl0755.41003MR1154279
- [11] R. Leis, Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986). Zbl0599.35001MR841971
- [12] A.L. Lombardi, Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal.31 (2011) 1683–1712. Zbl1229.65196MR2846771
- [13] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003). Zbl1024.78009MR2059447
- [14] P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in R3. Math. Comp.70 (2001) 507–523. Zbl1035.65131MR1709155
- [15] J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341. Zbl0419.65069
- [16] S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal.39 (2001) 784–816. Zbl1001.65122MR1860445
- [17] P. A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math. 606 (1977). Zbl0362.65089MR483555
- [18] Ch. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci.2 (1980) 12–25. Zbl0432.35032MR561375
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.