Bound states of a converging quantum waveguide

Giuseppe Cardone; Sergei A. Nazarov; Keijo Ruotsalainen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 1, page 305-315
  • ISSN: 0764-583X

Abstract

top
We consider a two-dimensional quantum waveguide composed of two semi-strips of width 1 and 1 − ε, where ε > 0 is a small real parameter, i.e. the waveguide is gently converging. The width of the junction zone for the semi-strips is 1 + O(√ε). We will present a sufficient condition for the existence of a weakly coupled bound state below π2, the lower bound of the continuous spectrum. This eigenvalue in the discrete spectrum is unique and its asymptotics is constructed and justified when ε → 0+.

How to cite

top

Cardone, Giuseppe, Nazarov, Sergei A., and Ruotsalainen, Keijo. "Bound states of a converging quantum waveguide." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.1 (2013): 305-315. <http://eudml.org/doc/273154>.

@article{Cardone2013,
abstract = {We consider a two-dimensional quantum waveguide composed of two semi-strips of width 1 and 1 − ε, where ε &gt; 0 is a small real parameter, i.e. the waveguide is gently converging. The width of the junction zone for the semi-strips is 1 + O(√ε). We will present a sufficient condition for the existence of a weakly coupled bound state below π2, the lower bound of the continuous spectrum. This eigenvalue in the discrete spectrum is unique and its asymptotics is constructed and justified when ε → 0+.},
author = {Cardone, Giuseppe, Nazarov, Sergei A., Ruotsalainen, Keijo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quantum waveguide; spectrum; asymptotics},
language = {eng},
number = {1},
pages = {305-315},
publisher = {EDP-Sciences},
title = {Bound states of a converging quantum waveguide},
url = {http://eudml.org/doc/273154},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Cardone, Giuseppe
AU - Nazarov, Sergei A.
AU - Ruotsalainen, Keijo
TI - Bound states of a converging quantum waveguide
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 1
SP - 305
EP - 315
AB - We consider a two-dimensional quantum waveguide composed of two semi-strips of width 1 and 1 − ε, where ε &gt; 0 is a small real parameter, i.e. the waveguide is gently converging. The width of the junction zone for the semi-strips is 1 + O(√ε). We will present a sufficient condition for the existence of a weakly coupled bound state below π2, the lower bound of the continuous spectrum. This eigenvalue in the discrete spectrum is unique and its asymptotics is constructed and justified when ε → 0+.
LA - eng
KW - quantum waveguide; spectrum; asymptotics
UR - http://eudml.org/doc/273154
ER -

References

top
  1. [1] Y. Avishai, D. Bessis, B.G. Giraud and G. Mantica, Quantum bound states in open geometries. Phys. Rev. B44 (1991) 8028–8034. 
  2. [2] M.Sh. Birman and M.Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. Math. Appl. (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987). Zbl0744.47017MR609148
  3. [3] D. Borisov, R. Bunoiu and G. Cardone, On a waveguide with frequently alternating boundary conditions : homogenized Neumann condition. Ann. Henri Poincaré11 (2010) 1591–1627. Zbl1210.82077MR2769705
  4. [4] D. Borisov, R. Bunoiu and G. Cardone, On a waveguide with an infinite number of small windows. C. R. Math. Acad. Sci. Paris, Ser. I 349 (2011) 53–56. Zbl1211.35098MR2755696
  5. [5] D. Borisov, R. Bunoiu and G. Cardone, Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows. Prob. Math. Anal. 58 (2011) 59–68; J. Math. Sci. 176 (2011) 774-785. Zbl1290.81038MR2838974
  6. [6] D. Borisov, R. Bunoiu and G. Cardone, Waveguide with non-periodically alternating Dirichlet and Robin conditions : homogenization and asymptotics. Z. Angew. Math. Phys. (ZAMP), DOI 10.1007/s00033-012-0264-2. Zbl1282.35033MR3068832
  7. [7] D. Borisov and G. Cardone, Homogenization of the planar waveguide with frequently alternating boundary conditions. J. Phys. A, Math. Theor. 42 (2009) 365205. Zbl1178.81088MR2534513
  8. [8] D. Borisov and G. Cardone, Planar Waveguide with “Twisted” Boundary Conditions : Discrete Spectrum. J. Math. Phys. 52 (2011) 123513. Zbl1273.81100MR2907657
  9. [9] D. Borisov and G. Cardone, Planar Waveguide with “Twisted” Boundary Conditions : Small Width. J. Math. Phys. 53 (2012) 023503. Zbl1274.81108MR2920471
  10. [10] D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčiřík, Bound states in weakly deformed strips and layers. Ann. Henri Poincaré2 (2001) 553–572. Zbl1043.35046MR1846856
  11. [11] W. Bulla, F. Gesztesy, W. Renger and B. Simon, Weakly coupled bound states in quantum waveguides. Proc. Amer. Math. Soc.125 (1997) 1487–1495. Zbl0868.35080MR1371117
  12. [12] G. Cardone, V. Minutolo and S.A. Nazarov, Gaps in the essential spectrum of periodic elastic waveguides. Z. Angew. Math. Mech.89 (2009) 729–741. Zbl1189.35201MR2567306
  13. [13] G. Cardone, S.A. Nazarov and C. Perugia, A gap in the continuous spectrum of a cylindrical waveguide with a periodic perturbation of the surface. Math. Nach.283 (2010) 1222–1244. Zbl1213.35327MR2730490
  14. [14] G. Cardone, S.A. Nazarov and K. Ruotsalainen, Asymptotics of an eigenvalue in the continuous spectrum of a converging waveguide. Mat. Sb.203 (2012) 3–32. Zbl1238.35071MR2962604
  15. [15] G. Cardone, V. Minutolo and S.A. Nazarov, Gaps in the essential spectrum of periodic elastic waveguides. Z. Angew. Math. Mech.89 (2009) 729–741. Zbl1189.35201MR2567306
  16. [16] G. Cardone, S.A. Nazarov and C. Perugia, A gap in the continuous spectrum of a cylindrical waveguide with a periodic perturbation of the surface. Math. Nach.283 (2010) 1222–1244. Zbl1213.35327MR2730490
  17. [17] P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys.7 (1995) 73–102. Zbl0837.35037MR1310767
  18. [18] P. Exner and S.A. Vugalter, Bound states in a locally deformed waveguide : the critical case. Lett. Math. Phys.39 (1997) 59–68. Zbl0871.35067MR1432793
  19. [19] R.R. Gadyl’shin, On local perturbations of quantum waveguides. (Russian) Teoret. Mat. Fiz. 145 (2005) 358–371; Engl. transl. : Theoret. Math. Phys. 145 (2005) 1678–1690. Zbl1178.81078MR2243437
  20. [20] V.V. Grushin, On the eigenvalues of a finitely perturbed Laplace operator in infinite cylindrical domains. Mat. Zametki 75 (2004) 360–371; Engl. transl. : Math. Notes 75 (2004) 331–340. Zbl1111.35022MR2068799
  21. [21] D.S. Jones, The eigenvalues of ∇2u + λu = 0 when the boundary conditions are given on semi-infinite domains. Proc. Cambridge Philos. Soc. 49 (1953) 668–684. Zbl0051.07704MR58086
  22. [22] V.A. Kondratiev, Boundary value problems for elliptic problems in domains with conical or corner points, Trudy Moskov. Matem. Obshch 16 (1967) 209–292. Engl. transl. : Trans. Moscow Math. Soc. 16 (1967) 227–313. Zbl0194.13405
  23. [23] V.G. Maz’ya and B.A. Plamenevskii, On coefficients in asymptotics of solutions of elliptic boundary value problems in a domain with conical points, Math. Nachr. 76 (1977) 29–60; Engl. transl. : Amer. Math. Soc. Transl. 123 (1984) 57–89. Zbl0554.35036MR601608
  24. [24] V.G. Maz’ya and B.A. Plamenevskii, Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 81 (1978) 25–82; Engl. transl. : Amer. Math. Soc. Transl. Ser. 123 (1984) 1–56. Zbl0554.35035MR492821
  25. [25] V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevskij, Boris Asymptotic theory of elliptic boundary value problems in singularly perturbed domains II, Translated from the German by Plamenevskij. Operator Theory : Advances and Applications. Birkhäuser Verlag, Basel 112 (2000). Zbl1127.35301MR1779978
  26. [26] S.A. Nazarov, Two-term asymptotics of solutions of spectral problems with singular perturbations, Mat. sbornik. 178 (1991) 291–320; Engl. transl. : Math. USSR. Sbornik. 69 (1991) 307–340. Zbl0732.35004
  27. [27] S.A. Nazarov, Discrete spectrum of cranked, branchy and periodic waveguides, Algebra i analiz 23 (2011) 206–247; Engl. transl. : St. Petersburg Math. J. 23 (2011). Zbl1238.35075MR2841676
  28. [28] S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries. Nauka, Moscow (1991); Engl. transl. : Elliptic problems in domains with piecewise smooth boundaries. Walter de Gruyter, Berlin, New York (1994). Zbl0806.35001MR1283387

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.