Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary

Farshid Dabaghi; Adrien Petrov; Jérôme Pousin; Yves Renard

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 4, page 1147-1169
  • ISSN: 0764-583X

Abstract

top
This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.

How to cite

top

Dabaghi, Farshid, et al. "Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.4 (2014): 1147-1169. <http://eudml.org/doc/273163>.

@article{Dabaghi2014,
abstract = {This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.},
author = {Dabaghi, Farshid, Petrov, Adrien, Pousin, Jérôme, Renard, Yves},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence; uniqueness; convergence; mass redistribution method; variational inequality; unilateral contact; numerical experiments},
language = {eng},
number = {4},
pages = {1147-1169},
publisher = {EDP-Sciences},
title = {Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary},
url = {http://eudml.org/doc/273163},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Dabaghi, Farshid
AU - Petrov, Adrien
AU - Pousin, Jérôme
AU - Renard, Yves
TI - Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 4
SP - 1147
EP - 1169
AB - This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.
LA - eng
KW - existence; uniqueness; convergence; mass redistribution method; variational inequality; unilateral contact; numerical experiments
UR - http://eudml.org/doc/273163
ER -

References

top
  1. [1] P. Alart and A. Curnier, A generalized Newton method for contact problems with friction. J. Mech. Theor. Appl.7 (1988) 67–82. Zbl0679.73046MR988336
  2. [2] F. Armero and E. Petocz, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg.158 (1998) 269–300. Zbl0954.74055MR1631048
  3. [3] J.P. Aubin, Approximation of elliptic boundary-value problems. Pure and Applied Mathematics, Vol. XXVI. Wiley-Interscience (1972). Zbl0248.65063MR478662
  4. [4] J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc.63 (1977) 370–373. Zbl0353.47017MR442748
  5. [5] D. Bárcenas, The fundamental theorem of calculus for Lebesgue integral. Divulg. Mat.8 (2000) 75–85. Zbl0978.26001MR1762240
  6. [6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam (1973). Zbl0252.47055MR348562
  7. [7] M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1984). Zbl0635.65079MR762089
  8. [8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. INSTN: Collection Enseignement. Masson, Paris (1988). Zbl0749.35005
  9. [9] K. Deimling, Multivalued differential equations. Vol. 1 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1992). Zbl0760.34002MR1189795
  10. [10] D. Doyen and A. Ern, Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun. Math. Sci.7 (2009) 1063–1072. Zbl1245.74045MR2604632
  11. [11] D. Doyen, A. Ern and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. (2011) 223–249. Zbl1315.74019MR2783193
  12. [12] A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci., vol. 159. Springer-Verlag, New York (2004). Zbl1059.65103MR2050138
  13. [13] C. Hager and B.I. Wohlmuth, Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements. SIAM J. Num. Anal.47 (2009) 1863–1885. Zbl05736077MR2505877
  14. [14] P. Hauret, Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg.199 (2010) 2941–2957. Zbl1231.74148MR2740769
  15. [15] T.J.R. Hugues, R.L. Taylor, J.L. Sackman, A. Curnier and W. Kano Knukulchai, A finite method for a class of contact-impact problems. Comput. Methods Appl. Mech. Engrg.8 (1976) 249–276. Zbl0367.73075
  16. [16] H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids27 (2008) 918–932. Zbl1147.74044MR2441269
  17. [17] S. Krenk, Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Engrg.195 (2006) 6110–6124. Zbl1144.74047MR2250933
  18. [18] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies Appl. Math. SIAM, Philadelphia, Pa (1988). Zbl0685.73002MR961258
  19. [19] J.U. Kim, A boundary thin obstacle problem for a wave equation. Commun. Partial Differential Eqs.14 (1989) 1011–1026. Zbl0704.35101MR1017060
  20. [20] T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg.40 (1997) 863–886. Zbl0886.73067MR1430987
  21. [21] T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg.53 (2002) 245–274. Zbl1112.74526MR1873995
  22. [22] G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Eqs.53 (1984) 309–361. Zbl0559.35043MR752204
  23. [23] J.-J. Moreau, Liaisons unilatérales sans frottement et chocs inélastiques. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre296 (1983) 1473–1476. Zbl0517.70018MR721066
  24. [24] J.-J. Moreau and P.D. Panagiotopoulos, Nonsmooth mechanics and applications. Vol. 302 of CISM Courses Lect. Springer-Verlag, Vienna (1988). Zbl0652.00016MR991345
  25. [25] L. Paoli, Time discretization of vibro-impact. R. Soc. London Philos. Trans. Ser. A Math. Phys. Eng. Sci.359 (2001) 2405–2428. Zbl1067.70012MR1884307
  26. [26] L. Paoli and M. Schatzman, A numerical scheme for impact problem I. SIAM J. Numer. Anal.40 (2002) 702–733. Zbl1021.65065MR1921675
  27. [27] L. Paoli and M. Schatzman, Approximation et existence en vibro-impact. C. R. Acad. Sci. Paris Sér. I Math.329 (1999) 1003–1007. Zbl0940.65147MR1735892
  28. [28] Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engng.256 (2013) 38–55. MR3029045
  29. [29] Y. Renard and J. Pommier, Getfem++. An Open Source generic C++ library for finite element methods. http://home.gna.org/getfem. 
  30. [30] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edn (1974). Zbl0278.26001MR344043
  31. [31] M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl.73 (1980) 138–191. Zbl0497.73059MR560941
  32. [32] M. Schatzman and M. Bercovier, Numerical approximation of a wave equation with unilateral constraints. Math. Comput.53 (1989) 55–79. Zbl0683.65088MR969491
  33. [33] K. Schweizerhof, J.O. Hallquist and D. Stillman, Efficiency refinements of contact strategies and algorithms in explicit finite element programming. Compt. Plasticity. Edited by Owen, Onate, Hinton, Pineridge (1992) 457–482. 
  34. [34] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688
  35. [35] P. Wriggers, Computational contact mechanics. John Wiley and Sons Ltd. (2002). Zbl1104.74002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.