Time-dependent coupling of Navier–Stokes and Darcy flows

Aycil Cesmelioglu; Vivette Girault; Béatrice Rivière

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 2, page 539-554
  • ISSN: 0764-583X

Abstract

top
A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.

How to cite

top

Cesmelioglu, Aycil, Girault, Vivette, and Rivière, Béatrice. "Time-dependent coupling of Navier–Stokes and Darcy flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.2 (2013): 539-554. <http://eudml.org/doc/273169>.

@article{Cesmelioglu2013,
abstract = {A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.},
author = {Cesmelioglu, Aycil, Girault, Vivette, Rivière, Béatrice},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multiphysics; weak solution; interface conditions; Beavers–Joseph–Saffman; Beavers-Joseph-Saffman},
language = {eng},
number = {2},
pages = {539-554},
publisher = {EDP-Sciences},
title = {Time-dependent coupling of Navier–Stokes and Darcy flows},
url = {http://eudml.org/doc/273169},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Cesmelioglu, Aycil
AU - Girault, Vivette
AU - Rivière, Béatrice
TI - Time-dependent coupling of Navier–Stokes and Darcy flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 2
SP - 539
EP - 554
AB - A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.
LA - eng
KW - multiphysics; weak solution; interface conditions; Beavers–Joseph–Saffman; Beavers-Joseph-Saffman
UR - http://eudml.org/doc/273169
ER -

References

top
  1. [1] R. Adams, Sobolev Spaces. Academic Press, New-York (1975). Zbl1098.46001MR450957
  2. [2] T. Arbogast and D. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci.11 (2007) 207–218. Zbl1186.76660MR2344200
  3. [3] T. Arbogast and H. Lehr, Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci.10 (2006) 291–302. Zbl1197.76122MR2261837
  4. [4] J. Aubin, Un théorème de compacité. CRAS Paris Sér. I256 (1963) 5042–5044. Zbl0195.13002
  5. [5] L. Badea, M. Discacciati and A. Quarteroni, Mathematical analysis of the Navier–Stokes/Darcy coupling. Numer. Math.1152 (2010) 195–227. Zbl05702937MR2606960
  6. [6] G. Beavers and D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech.30 (1967) 197–207. 
  7. [7] E. Burman and P. Hansbo, A unified stabilized method for Stokes and Darcy’s equations. J. Computat. Appl. Math.198 (2007) 35–51. Zbl1101.76032MR2250387
  8. [8] Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci.8 (2010) 1–25. Zbl1189.35244MR2655899
  9. [9] A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math.16 (2008) 249–280. Zbl1159.76010MR2493168
  10. [10] A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput.40 (2009) 115–140. Zbl1203.76078
  11. [11] P. Chidyagwai and B. Rivière, On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng.198 (2009) 3806–3820. Zbl1230.76023MR2557499
  12. [12] P. Chidyagwai and B. Rivière, Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Resour.33 (2010) 92–105. 
  13. [13] E.A. Coddington and N. Levinson, Theory of differential equations. McGraw–Hill, New York (1955). Zbl0064.33002
  14. [14] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004). 
  15. [15] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. in Numerical Analysis and Advanced Applications ENUMATH 2001. Springer, Milan (2003) 3–20. Zbl1254.76051MR2360703
  16. [16] M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling : Modeling, analysis, and numerical approximation. Rev. Mat. Comput.22 (2009) 315–426. Zbl1172.76050MR2553940
  17. [17] M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal.45 (2007) 1246–1268. Zbl1139.76030MR2318811
  18. [18] V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal.47 (2009) 2052–2089. Zbl05736085MR2519594
  19. [19] P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston, MA. Monogr. Stud. Math. 24 (1985). Zbl0695.35060MR775683
  20. [20] N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Media64 (2006) 1573–1634. Zbl1309.76195
  21. [21] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. Zbl0487.76035MR650052
  22. [22] W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math.60 (2000) 1111–1127. Zbl0969.76088MR1760028
  23. [23] G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Computat. Phys.229 (2010) 5933–5943. Zbl05784782MR2657851
  24. [24] W. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal.40 (2003) 2195–2218. Zbl1037.76014MR1974181
  25. [25] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin, Heidelberg, New York (1961). Zbl0098.31101
  26. [26] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. I. Springer-Verlag, New York (1972). Zbl0223.35039MR350177
  27. [27] K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40 (2002) 1605–1631 (electronic). Zbl1037.65120MR1950614
  28. [28] M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal.45 (2007) 1801–1813. Zbl1146.76031MR2346360
  29. [29] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). Zbl1225.35003
  30. [30] B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput.22 (2005) 479–500. Zbl1065.76143MR2142206
  31. [31] B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal.42 (2005) 1959–1977. Zbl1084.35063MR2139232
  32. [32] P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math.50 (1971) 292–315. Zbl0271.76080
  33. [33] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pures Appl.146 (1990) 1093–1117. Zbl0629.46031MR916688
  34. [34] D. Vassilev and I. Yotov, Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput.31 (2009) 3661–3684. Zbl05801892MR2556557

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.