Time-dependent coupling of Navier–Stokes and Darcy flows
Aycil Cesmelioglu; Vivette Girault; Béatrice Rivière
- Volume: 47, Issue: 2, page 539-554
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCesmelioglu, Aycil, Girault, Vivette, and Rivière, Béatrice. "Time-dependent coupling of Navier–Stokes and Darcy flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.2 (2013): 539-554. <http://eudml.org/doc/273169>.
@article{Cesmelioglu2013,
abstract = {A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.},
author = {Cesmelioglu, Aycil, Girault, Vivette, Rivière, Béatrice},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multiphysics; weak solution; interface conditions; Beavers–Joseph–Saffman; Beavers-Joseph-Saffman},
language = {eng},
number = {2},
pages = {539-554},
publisher = {EDP-Sciences},
title = {Time-dependent coupling of Navier–Stokes and Darcy flows},
url = {http://eudml.org/doc/273169},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Cesmelioglu, Aycil
AU - Girault, Vivette
AU - Rivière, Béatrice
TI - Time-dependent coupling of Navier–Stokes and Darcy flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 2
SP - 539
EP - 554
AB - A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.
LA - eng
KW - multiphysics; weak solution; interface conditions; Beavers–Joseph–Saffman; Beavers-Joseph-Saffman
UR - http://eudml.org/doc/273169
ER -
References
top- [1] R. Adams, Sobolev Spaces. Academic Press, New-York (1975). Zbl1098.46001MR450957
- [2] T. Arbogast and D. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci.11 (2007) 207–218. Zbl1186.76660MR2344200
- [3] T. Arbogast and H. Lehr, Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci.10 (2006) 291–302. Zbl1197.76122MR2261837
- [4] J. Aubin, Un théorème de compacité. CRAS Paris Sér. I256 (1963) 5042–5044. Zbl0195.13002
- [5] L. Badea, M. Discacciati and A. Quarteroni, Mathematical analysis of the Navier–Stokes/Darcy coupling. Numer. Math.1152 (2010) 195–227. Zbl05702937MR2606960
- [6] G. Beavers and D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech.30 (1967) 197–207.
- [7] E. Burman and P. Hansbo, A unified stabilized method for Stokes and Darcy’s equations. J. Computat. Appl. Math.198 (2007) 35–51. Zbl1101.76032MR2250387
- [8] Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci.8 (2010) 1–25. Zbl1189.35244MR2655899
- [9] A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math.16 (2008) 249–280. Zbl1159.76010MR2493168
- [10] A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput.40 (2009) 115–140. Zbl1203.76078
- [11] P. Chidyagwai and B. Rivière, On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng.198 (2009) 3806–3820. Zbl1230.76023MR2557499
- [12] P. Chidyagwai and B. Rivière, Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Resour.33 (2010) 92–105.
- [13] E.A. Coddington and N. Levinson, Theory of differential equations. McGraw–Hill, New York (1955). Zbl0064.33002
- [14] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004).
- [15] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. in Numerical Analysis and Advanced Applications ENUMATH 2001. Springer, Milan (2003) 3–20. Zbl1254.76051MR2360703
- [16] M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling : Modeling, analysis, and numerical approximation. Rev. Mat. Comput.22 (2009) 315–426. Zbl1172.76050MR2553940
- [17] M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal.45 (2007) 1246–1268. Zbl1139.76030MR2318811
- [18] V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal.47 (2009) 2052–2089. Zbl05736085MR2519594
- [19] P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston, MA. Monogr. Stud. Math. 24 (1985). Zbl0695.35060MR775683
- [20] N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Media64 (2006) 1573–1634. Zbl1309.76195
- [21] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. Zbl0487.76035MR650052
- [22] W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math.60 (2000) 1111–1127. Zbl0969.76088MR1760028
- [23] G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Computat. Phys.229 (2010) 5933–5943. Zbl05784782MR2657851
- [24] W. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal.40 (2003) 2195–2218. Zbl1037.76014MR1974181
- [25] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin, Heidelberg, New York (1961). Zbl0098.31101
- [26] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. I. Springer-Verlag, New York (1972). Zbl0223.35039MR350177
- [27] K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40 (2002) 1605–1631 (electronic). Zbl1037.65120MR1950614
- [28] M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal.45 (2007) 1801–1813. Zbl1146.76031MR2346360
- [29] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). Zbl1225.35003
- [30] B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput.22 (2005) 479–500. Zbl1065.76143MR2142206
- [31] B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal.42 (2005) 1959–1977. Zbl1084.35063MR2139232
- [32] P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math.50 (1971) 292–315. Zbl0271.76080
- [33] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pures Appl.146 (1990) 1093–1117. Zbl0629.46031MR916688
- [34] D. Vassilev and I. Yotov, Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput.31 (2009) 3661–3684. Zbl05801892MR2556557
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.