Multiscale modelling of sound propagation through the lung parenchyma

Paul Cazeaux; Jan S. Hesthaven

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 1, page 27-52
  • ISSN: 0764-583X

Abstract

top
In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective acoustic equations for asymptotically small ε. This process turns out to introduce new memory effects. The effective material parameters are determined from the solution of frequency-dependent micro-structure cell problems. We propose a numerical approach to investigate the sound propagation in the homogenized parenchyma using a Discontinuous Galerkin formulation. Numerical examples are presented.

How to cite

top

Cazeaux, Paul, and Hesthaven, Jan S.. "Multiscale modelling of sound propagation through the lung parenchyma." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.1 (2014): 27-52. <http://eudml.org/doc/273201>.

@article{Cazeaux2014,
abstract = {In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective acoustic equations for asymptotically small ε. This process turns out to introduce new memory effects. The effective material parameters are determined from the solution of frequency-dependent micro-structure cell problems. We propose a numerical approach to investigate the sound propagation in the homogenized parenchyma using a Discontinuous Galerkin formulation. Numerical examples are presented.},
author = {Cazeaux, Paul, Hesthaven, Jan S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mathematical modeling; periodic homogenization; viscoelastic media; fluid-structure interaction; discontinuous Galerkin methods},
language = {eng},
number = {1},
pages = {27-52},
publisher = {EDP-Sciences},
title = {Multiscale modelling of sound propagation through the lung parenchyma},
url = {http://eudml.org/doc/273201},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Cazeaux, Paul
AU - Hesthaven, Jan S.
TI - Multiscale modelling of sound propagation through the lung parenchyma
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 1
SP - 27
EP - 52
AB - In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective acoustic equations for asymptotically small ε. This process turns out to introduce new memory effects. The effective material parameters are determined from the solution of frequency-dependent micro-structure cell problems. We propose a numerical approach to investigate the sound propagation in the homogenized parenchyma using a Discontinuous Galerkin formulation. Numerical examples are presented.
LA - eng
KW - mathematical modeling; periodic homogenization; viscoelastic media; fluid-structure interaction; discontinuous Galerkin methods
UR - http://eudml.org/doc/273201
ER -

References

top
  1. [1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (1992) 1482–1518. Zbl0770.35005MR1185639
  2. [2] L. Baffico, C. Grandmont, Y. Maday and A. Osses, Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul.7 (2008) 432–465. Zbl1158.93003MR2399553
  3. [3] M. Baumgaertel and H.H. Winter, Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheologica Acta28 (1989) 511–519. 
  4. [4] A. Blasselle and G. Griso, Mechanical modeling of the skin. Asymptotic Analysis74 (2011) 167–198. Zbl1281.35087MR2868051
  5. [5] S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul.7 (2008) 466–494. Zbl1156.74358MR2438574
  6. [6] R. Burridge and J. Keller, Biot’s poroelasticity equations by homogenization, in Macroscopic Properties of Disordered Media, vol. 154 of Lecture Notes in Physics. Springer (1982) 51–57. Zbl0487.73001MR674958
  7. [7] J.P. Butler, J.L. Lehr and J.M. Drazen, Longitudinal elastic wave propagation in pulmonary parenchyma. J. Appl. Phys.62 (1987) 1349–1355. 
  8. [8] J. Clegg and M.P. Robinson, A genetic algorithm used to fit Debye functions to the dielectric properties of tissues. 2010 IEEE Congress on Evolutionary Computation (CEC) (2010) 1–8. 
  9. [9] F. Dunn, Attenuation and speed of ultrasound in lung: Dependence upon frequency and inflation. J. Acoust. Soc. Am.80 (1986) 1248–1250. 
  10. [10] M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, vol. 12 of SIAM Studies in Applied Mathematics. SIAM, Philadelphia, PA (1992). Zbl0753.73003MR1153021
  11. [11] M. Fang, R.P. Gilbert and X. Xie, Deriving the effective ultrasound equations for soft tissue interrogation. Comput. Math. Appl.49 (2005) 1069–1080. Zbl1236.74239MR2141251
  12. [12] R.P. Gilbert and A. Mikelić, Homogenizing the acoustic properties of the seabed. I. Nonlinear Anal.40 (2000) 185–212. Zbl0958.35108MR1768409
  13. [13] Q. Grimal, A. Watzky and S. Naili, A one-dimensional model for the propagation of transient pressure waves through the lung. J. Biomech.35 (2002) 1081–1089. Zbl1087.74603
  14. [14] A. Hanygan, Viscous dissipation and completely monotonic relaxation moduli. Rheologica Acta44 (2005) 614–621. 
  15. [15] F. Hecht, FreeFem++ manual (2012). 
  16. [16] J.S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods, vol. 54 of Texts in Applied Mathematics. Springer, New York (2008). Zbl1134.65068MR2372235
  17. [17] A. Kanevsky, M.H. Carpenter, D. Gottlieb and J.S. Hesthaven, Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys.225 (2007) 1753–1781. Zbl1123.65097MR2349202
  18. [18] D.F. Kelley, T.J. Destan and R.J. Luebbers, Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. Antennas Propagation IEEE Trans.55 (2007) 1999–2005. MR2338772
  19. [19] C.A. Kennedy and M.H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math.44 (2003) 139–181. Zbl1013.65103MR1951292
  20. [20] A. Kloeckner, Hedge: Hybrid and Easy Discontinuous Galerkin Environment. http://www.cims.]nyu.edu/˜kloeckner/ (2010). 
  21. [21] S.S. Kraman, Speed of low-frequency sound through lungs of normal men. J. Appl. Phys. (1983) 1862–1867. 
  22. [22] R.J. LeVeque, Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1990). Zbl0847.65053MR1077828
  23. [23] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1 of Travaux et Recherches Mathématiques. Dunod, Paris (1968). Zbl0165.10801
  24. [24] M. Lourakis, levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/˜lourakis/levmar/ (2004). 
  25. [25] Y. Maday, N. Morcos and T. Sayah, Reduced basis numerical homogenization for scalar elliptic equations with random coefficients: application to blood micro-circulation. Submitted to SIAM J. Appl Math. (2012). 
  26. [26] N. Morcos, Modélisation mathématique et simulation de systèmes microvasculaires. Ph.D. thesis, Université Pierre et Marie Curie (2011). 
  27. [27] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (1989) 608–623. Zbl0688.35007MR990867
  28. [28] M.R. Owen and M.A. Lewis, The mechanics of lung tissue under high-frequency ventilation. SIAM J. Appl. Math.61 (2001) 1731–1761. Zbl0994.76105MR1824522
  29. [29] H. Pasterkamp, S.S. Kraman and G.R. Wodicka, Respiratory sounds. advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 156 (1997) 974. 
  30. [30] D.A. Rice, Sound speed in pulmonary parenchyma. J. Appl. Physiol.54 (1983) 304–308. 
  31. [31] E. Roan and M.W. Waters, What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell Mol. Physiol.301 (2011) 625–635. 
  32. [32] D. Rueter, H.P. Hauber, D. Droeman, P. Zabel and S. Uhlig, Low-frequency ultrasound permeates the human thorax and lung: a novel approach to non-invasive monitoring. Ultraschall Med.31 (2010) 53–62. 
  33. [33] E. Sanchez–Palencia, Vibration of mixtures of solids and fluids, in Non-Homogeneous Media and Vibration Theory, vol. 127 of Lecture Notes in Physics. Springer (1980) 158–190. 
  34. [34] R.A. Schapery, A simple collocation method for fitting viscoelastic models to experimental data. GALCIT SM 63 (1961) 23. 
  35. [35] M. Siklosi, O.E. Jensen, R.H. Tew and A. Logg. Multiscale modeling of the acoustic properties of lung parenchyma. ESAIM: Proc. 23 (2008) 78–97. Zbl1156.92307MR2509207
  36. [36] J. Sorvari and J. Hämäläinen, Time integration in linear viscoelasticity – a comparative study. Mech. Time-Dependent Mater.14 (2010) 307–328 
  37. [37] B. Suki, S. Ito, D. Stamenović, K.R. Lutchen and E.P. Ingenito, Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol.98 (2005) 1892–1899. 
  38. [38] P. Suquet, Linear problems. In Homogenization Techniques for Composite Media, vol. 272 of Lecture Notes in Physics. Edited by Enrique Sanchez–Palencia and André Zaoui. Springer (1987) 209–230. Zbl0619.00027MR902007
  39. [39] L. Tartar, The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer (2009). Zbl1188.35004MR2582099
  40. [40] Y.-M. Yi, S.-H. Park and S.-K. Youn, Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct.35 (1998) 2039–2055. Zbl0933.74054MR1616148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.