T-coercivity for scalar interface problems between dielectrics and metamaterials
Anne-Sophie Bonnet-Ben Dhia; Lucas Chesnel; Patrick Ciarlet
- Volume: 46, Issue: 6, page 1363-1387
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDhia, Anne-Sophie Bonnet-Ben, Chesnel, Lucas, and Ciarlet, Patrick. "T-coercivity for scalar interface problems between dielectrics and metamaterials." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 46.6 (2012): 1363-1387. <http://eudml.org/doc/273206>.
@article{Dhia2012,
abstract = {Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive + compact) framework. For that, we build some criteria, based on the geometry of the interface between the dielectric and the metamaterial. The proofs combine simple geometrical arguments with the approach of T-coercivity, introduced by the first and third authors and co-worker. Furthermore, the use of localization techniques allows us to derive well-posedness under conditions that involve the knowledge of the coefficients only near the interface. When the coefficients are piecewise constant, we establish the optimality of the criteria.},
author = {Dhia, Anne-Sophie Bonnet-Ben, Chesnel, Lucas, Ciarlet, Patrick},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {metamaterials; interface problem; T-coercivity; dielectrics; Dirichlet boundary condition; coercivity; wave transmission},
language = {eng},
number = {6},
pages = {1363-1387},
publisher = {EDP-Sciences},
title = {T-coercivity for scalar interface problems between dielectrics and metamaterials},
url = {http://eudml.org/doc/273206},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Dhia, Anne-Sophie Bonnet-Ben
AU - Chesnel, Lucas
AU - Ciarlet, Patrick
TI - T-coercivity for scalar interface problems between dielectrics and metamaterials
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2012
PB - EDP-Sciences
VL - 46
IS - 6
SP - 1363
EP - 1387
AB - Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive + compact) framework. For that, we build some criteria, based on the geometry of the interface between the dielectric and the metamaterial. The proofs combine simple geometrical arguments with the approach of T-coercivity, introduced by the first and third authors and co-worker. Furthermore, the use of localization techniques allows us to derive well-posedness under conditions that involve the knowledge of the coefficients only near the interface. When the coefficients are piecewise constant, we establish the optimality of the criteria.
LA - eng
KW - metamaterials; interface problem; T-coercivity; dielectrics; Dirichlet boundary condition; coercivity; wave transmission
UR - http://eudml.org/doc/273206
ER -
References
top- [1] A.-S. Bonnet-Ben Dhia, L. Chesnel and X. Claeys, Radiation condition for a non-smooth interface between a dielectric and a metamaterial [hal-00651008]. Zbl1283.35135
- [2] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr. and C.M. Zwölf, A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials. Math. Models Methods Appl. Sci. 18 (2008) 1605–1631. Zbl1173.35119MR2446403
- [3] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr. and C.M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919; Corrigendum J. Comput. Appl. Math. 234 (2010) 2616. Zbl1202.78026MR2644187
- [4] A.-S. Bonnet-Ben Dhia, M. Dauge and K. Ramdani, Analyse spectrale et singularités d’un problème de transmission non coercif. C.R. Acad. Sci. Paris, Ser. I 328 (1999) 717–720. Zbl0932.35153MR1680769
- [5] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag (1991). Zbl0788.73002MR1115205
- [6] L. Chesnel and P. Ciarlet Jr., Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials. SIAM J. Math. Anal.43 (2011) 2150–2169. Zbl1250.78007MR2837498
- [7] X. Claeys, Analyse asymptotique et numérique de la diffraction d’ondes par des fils minces. Ph.D. thesis, Université Versailles – Saint-Quentin (2008) (in French).
- [8] M. Costabel and E. Stephan, A direct boundary integral method for transmission problems. J. Math. Anal. Appl.106 (1985) 367–413. Zbl0597.35021MR782799
- [9] M. Dauge and B. Texier, Problèmes de transmission non coercifs dans des polygones. Technical Report 97–27, Université de Rennes 1, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex, France (1997) http://hal.archives-ouvertes.fr/docs/00/56/23/29/PDF/BenjaminT˙arxiv.pdf (in French).
- [10] L.D. Evans, Partial Differential Equations, Graduate studies in mathematics. Americain Mathematical Society 19 (1998). Zbl0902.35002
- [11] P. Fernandes and M. Raffetto, Well posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials. Math. Models Methods Appl. Sci.19 (2009) 2299–2335. Zbl1205.78058MR2599662
- [12] V.A. Kozlov, V.G. Maz’ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs. Americain Mathematical Society 52 (1997). Zbl0947.35004MR1469972
- [13] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1968). Zbl0165.10801
- [14] W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). Zbl0948.35001MR1742312
- [15] S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Expositions in Mathematics. De Gruyter 13 (1994). Zbl0806.35001MR1283387
- [16] S. Nicaise and A.M. Sändig, General interface problems-I. Math. Meth. Appl. Sci.17 (1994) 395–429. Zbl0824.35014MR1274152
- [17] S. Nicaise and A.M. Sändig, General interface problems-II. Math. Meth. Appl. Sci.17 (1994) 431–450. Zbl0824.35015MR1257586
- [18] S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math.235 (2011) 4272–4282. Zbl1220.65167MR2801447
- [19] G. Oliveri and M. Raffetto, A warning about metamaterials for users of frequency-domain numerical simulators. IEEE Trans. Antennas Propag.56 (2008) 792–798. MR2424396
- [20] J. Peetre, Another approach to elliptic boundary problems. Commun. Pure Appl. Math.14 (1961) 711–731. Zbl0104.07303MR171069
- [21] M. Raffetto, Ill-posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports. IET Sci. Meas. Technol.1 (2007) 232–239.
- [22] K. Ramdani, Lignes supraconductrices : analyse mathématique et numérique. Ph.D. thesis, Université Paris 6 (1999) (in French).
- [23] A.A. Sukhorukov, I.V. Shadrivov and Y.S. Kivshar, Wave scattering by metamaterial wedges and interfaces. Int. J. Numer. Model.19 (2006) 105–117. Zbl1087.78004
- [24] H. Wallén, H. Kettunen and A. Sihvola, Surface modes of negative-parameter interfaces and the importance of rounding sharp corners. Metamaterials2 (2008) 113–121.
- [25] J. Wloka, Partial Differ. Equ. Cambridge Univ. Press (1987).
- [26] C.M. Zwölf, Méthodes variationnelles pour la modélisation des problèmes de transmission d’onde électromagnétique entre diélectrique et méta-matériau. Ph.D. thesis, Université Versailles, Saint-Quentin (2008) (in French).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.