Interface model coupling via prescribed local flux balance
Annalisa Ambroso; Christophe Chalons; Frédéric Coquel; Thomas Galié
- Volume: 48, Issue: 3, page 895-918
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAmbroso, Annalisa, et al. "Interface model coupling via prescribed local flux balance." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 895-918. <http://eudml.org/doc/273233>.
@article{Ambroso2014,
abstract = {This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary solutions. In addition, the second method preserves mass conservation and exactly restores the prescribed singular pressure drops for both unsteady and steady solutions.},
author = {Ambroso, Annalisa, Chalons, Christophe, Coquel, Frédéric, Galié, Thomas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {gas dynamics equations; interfacial coupling; measure valued load; relaxation method; coupled Riemann problem; measure-valued load; non-conservative coupling},
language = {eng},
number = {3},
pages = {895-918},
publisher = {EDP-Sciences},
title = {Interface model coupling via prescribed local flux balance},
url = {http://eudml.org/doc/273233},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Ambroso, Annalisa
AU - Chalons, Christophe
AU - Coquel, Frédéric
AU - Galié, Thomas
TI - Interface model coupling via prescribed local flux balance
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 895
EP - 918
AB - This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary solutions. In addition, the second method preserves mass conservation and exactly restores the prescribed singular pressure drops for both unsteady and steady solutions.
LA - eng
KW - gas dynamics equations; interfacial coupling; measure valued load; relaxation method; coupled Riemann problem; measure-valued load; non-conservative coupling
UR - http://eudml.org/doc/273233
ER -
References
top- [1] M.S. Adimurthi and G.D.V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ.2 (2005) 783–837. Zbl1093.35045MR2195983
- [2] D. Amadori, L. Gosse, G. Graziano, Godunov-type approximation for a general resonant balance law with large data. J. Differ. Equ.198 (2004) 233–274. Zbl1058.35156MR2038581
- [3] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, P.-A. Raviart and N. Seguin, The coupling of homogeneous models for two-phase flows. Int. J. Finite Volumes4 (2007) 1–39. Zbl1140.35515MR2465468
- [4] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, P.-A. Raviart and N. Seguin, Coupling of general Lagrangian systems. Math. Comput.77 (2008) 909–941. Zbl1149.35380MR2373185
- [5] A. Ambroso, J.-M. Hérard and O. Hurisse, A method to couple HEM and HRM two-phase flow models. Comput. Fluids38 (2009) 738–756. Zbl1242.76326MR2645675
- [6] E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinburgh Sect. A135 (2005) 253–265. Zbl1071.35079MR2132749
- [7] F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Commun. Partial Differential Equations31 (2006) 371–395. Zbl1102.35064MR2209759
- [8] D. Bestion, M. Boucker, P. Boudier, P. Fillion, M. Grandotto, A. Guelfi, J.M. Hérard, E. Hervieu, P. Péturaud, Neptune: a new software platform for advanced nuclear thermal hydraulics. Nuclear Science and Engineering156 (2007) 281–324.
- [9] F. Bouchut, Nonlinear stability of Finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics, Birkhauser (2004). Zbl1086.65091MR2128209
- [10] B. Boutin, C. Chalons and P.A. Raviart, Existence result for the coupling problem of two scalar conservation laws with Riemann initial data. Math. Models Methods Appl. Sci.20 (2010) 1859–1898. Zbl1211.35017MR2735916
- [11] B. Boutin, F. Coquel and P.G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces. Proc. Roy. Soc. Edinburgh Sect. A 141 (2011) 921–956. Zbl1252.35188MR2838361
- [12] M. Bucci and P. Fillion, Analysis of the NUPEC PSBT Tests with FLICA-OVAP. Science and Technology of Nuclear Installations. Article ID 2012 (2012) 436142.
- [13] R. Bürger and K.H. Karlsen, Conservation laws with discontinuous flux: a short introduction. J. Engrg. Math.60 (2008) 241–247. Zbl1138.35365MR2396483
- [14] R. Bürger, K.H. Karlsen and J.D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal.47 (2009) 1684–1712. Zbl1201.35022MR2505870
- [15] C. Chalons, P.-A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations. Quaterly of Applied Mathematics66 (2008) 659–705. Zbl1157.76039MR2465140
- [16] C.M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Rational Mech. Anal.52 (1973) 1–9. Zbl0262.35034MR340837
- [17] S. Diehl, On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal.26 (1995) 1425–1451. Zbl0852.35094MR1356452
- [18] S. Diehl, Scalar conservation laws with discontinuous flux function. I. The viscous profile condition, Commun. Math. Phys. 176 (1996) 23–44. Zbl0845.35067MR1372816
- [19] W.H. Hager, Wastewater Hydraulics, Theory and Practice. Springer (2010).
- [20] T. Galié, Couplage interfacial de modèles pour la thermoohydraulique des réacteurs, Ph.D. thesis, Université Pierre et Marie Curie Paris 6 (2008).
- [21] T. Gimse and N.H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal.23 (1992) 635–648. Zbl0776.35034MR1158825
- [22] J. Glimm, D. Marchesin and O. McBryan, Numerical method for two phase flow with unstable interface. J. Comput. Phys.39 (1981) 179–200. Zbl0469.76079MR608722
- [23] P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 881–902. Zbl1086.35069MR2097035
- [24] E. Godlewski, K.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. M2AN Math. Model. Numer. Anal. 39 (2005) 649–692. Zbl1095.65084MR2165674
- [25] E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81–130. Zbl1063.65080MR2045460
- [26] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci.11 (2001) 339–365. Zbl1018.65108MR1820677
- [27] L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws. Math. Comp.71 (2001) 553–582. Zbl0997.65108MR1885615
- [28] J.M. Greenberg and A.Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal.33 (1996) 1–16. Zbl0876.65064MR1377240
- [29] E. Isaacson and B.J. Temple, Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math.52 (1992) 1260–1278. Zbl0794.35100MR1182123
- [30] J.M. Greenberg, A.Y.L. Roux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal.34 (1997) 1980–2007. Zbl0888.65100MR1472206
- [31] J.-M. Hérard, Schemes to couple flows between free and porous medium. Proceedings of AIAA (2005) 2005–4861.
- [32] J.-M. Hérard and O. Hurisse, Coupling two and one-dimensional models through a thin interface. Proceedings of AIAA (2005) 2005–4718.
- [33] J.-M. Hérard and O. Hurisse, Boundary conditions for the coupling of two-phase flow models. 18th AIAA CFD conference.
- [34] I.E. Idel’cik, Memento des pertes de charges. Coefficients de pertes de charges singulières et de pertes de charges par frottement. Collection Direction des Etudes et Recherches d’EDF. Eyrolles [in French] (1986).
- [35] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math.48 (1995) 235–276. Zbl0826.65078MR1322811
- [36] V.G. Kourakos, P. Rambaud, S. Chabane and J.M. Buchlin, Modeling of pressure drop in two-phase flow in singular geometries. 6th International Symposium on Multiphase Flow, Heat Mass Transfert and Energy Conservation. Xi’an, China, 11-15 July 2009, Paper No MN-30, 2009.
- [37] D.S. Miller (Ed.), Discharge Characteristics: IAHR Hydraulic Structures Design Manuals 8. Balkema: Rotterdam (1994).
- [38] S.N. Kruzkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. Zbl0215.16203MR267257
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.