A modified quasi-boundary value method for the backward time-fractional diffusion problem

Ting Wei; Jun-Gang Wang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 2, page 603-621
  • ISSN: 0764-583X

Abstract

top
In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed methods.

How to cite

top

Wei, Ting, and Wang, Jun-Gang. "A modified quasi-boundary value method for the backward time-fractional diffusion problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.2 (2014): 603-621. <http://eudml.org/doc/273247>.

@article{Wei2014,
abstract = {In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed methods.},
author = {Wei, Ting, Wang, Jun-Gang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {backward problem; fractional diffusion equation; modified quasi-boundary value method; convergence analysis; a priori parameter choice; morozov’s discrepancy principle; time-fractional diffusion equation; Morozov's discrepancy principle},
language = {eng},
number = {2},
pages = {603-621},
publisher = {EDP-Sciences},
title = {A modified quasi-boundary value method for the backward time-fractional diffusion problem},
url = {http://eudml.org/doc/273247},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Wei, Ting
AU - Wang, Jun-Gang
TI - A modified quasi-boundary value method for the backward time-fractional diffusion problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 2
SP - 603
EP - 621
AB - In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed methods.
LA - eng
KW - backward problem; fractional diffusion equation; modified quasi-boundary value method; convergence analysis; a priori parameter choice; morozov’s discrepancy principle; time-fractional diffusion equation; Morozov's discrepancy principle
UR - http://eudml.org/doc/273247
ER -

References

top
  1. [1] K.A. Ames and J.F. Epperson, A kernel-based method for the approximate solution of backward parabolic problems. SIAM J. Numer. Anal. (1997) 1357–1390. Zbl0889.65100MR1461788
  2. [2] K.A. Ames and L.E. Payne, Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation. Math. Models Methods Appl. Sci. 8 (1998) 187. Zbl0982.35119MR1612020
  3. [3] B. Berkowitz, H. Scher and S.E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res.36 (2000) 149–158. 
  4. [4] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Problems 25 (2009) 115002. Zbl1181.35322MR2545997
  5. [5] G. Chi, G. Li and X. Jia, Numerical inversions of a source term in the fade with a dirichlet boundary condition using final observations. Comput. Math. Appl.62 (2011) 1619–1626. Zbl1231.65158MR2834147
  6. [6] G.W. Clark and S.F. Oppenheimer, Quasireversibility methods for non-well-posed problems Electron. J. Differ. equ. (1994) 1–9. Zbl0811.35157MR1302574
  7. [7] M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl.301 (2005) 419–426. Zbl1084.34536MR2105682
  8. [8] X.L. Feng, L. Eldén and C.L. Fu, A quasi-boundary-value method for the cauchy problem for elliptic equations with nonhomogeneous neumann data. J. Inverse Ill-Posed Probl.18 (2010) 617–645. Zbl1279.65129MR2746685
  9. [9] D.N. Hào, N.V. Duc and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Probl. 25 (2009) 055002. Zbl1170.35555MR2501020
  10. [10] D.N. Hào, N.V. Duc and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method. IMA J. Appl. Math.75 (2010) 291–315. Zbl1194.35501MR2606977
  11. [11] D.N. Hào, N.V. Duc and H. Sahli, A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl.345 (2008) 805–815. Zbl1160.35070MR2429181
  12. [12] Y.J. Jiang and J.T. Ma, High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math.235 (2011) 3285–3290. Zbl1216.65130MR2784043
  13. [13] B.T. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28 (2012). Zbl1247.35203MR2946798
  14. [14] S.M. Kirkup and M. Wadsworth, Solution of inverse diffusion problems by operator-splitting methods. Appl. Math. Modelling26 (2002) 1003–1018. Zbl1014.65095
  15. [15] J.J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation. Appl. Anal.89 (2010) 1769–1788. Zbl1204.35177MR2683680
  16. [16] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl.59 (2010) 1766–1772. Zbl1189.35360MR2595950
  17. [17] Y. Luchko, Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal.14 (2011) 110–124. Zbl1273.35297MR2782248
  18. [18] F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput.187 (2007) 295–305. Zbl1122.26004MR2323582
  19. [19] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.339 (2000) 1–77. Zbl0984.82032MR1809268
  20. [20] R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion. Phys. Rev. E61 (2000) 6308–6311. 
  21. [21] D.A. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl.53 (2007) 1492–1501. Zbl1152.65463MR2332298
  22. [22] D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl.56 (2008) 1138–1145. Zbl1155.65372MR2437884
  23. [23] D.A. Murio, Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl.56 (2008) 2371–2381. Zbl1165.65386MR2466760
  24. [24] D.A. Murio, Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional ihcp. Inverse Probl. Sci. Engrg.17 (2009) 229–243. Zbl1159.65313MR2588316
  25. [25] D.A. Murio and C.E. Mejía, Source terms identification for time fractional diffusion equation. Revista Colombiana de Matemáticas42 (2008) 25–46. Zbl1189.65199MR2581255
  26. [26] D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl.56 (2008) 1138–1145. Zbl1155.65372MR2437884
  27. [27] I. Podlubny, Fractional differential equations, in vol. 198 of Math. Sci. Eng. Academic Press Inc., San Diego, CA (1999). Zbl0924.34008MR1658022
  28. [28] I. Podlubny and M. Kacenak, Mittag-leffler function. The MATLAB routine, available at http://www.mathworks.com/matlabcentral/fileexchange (2006). 
  29. [29] H. Pollard, The completely monotonic character of the mittag-leffler function Eα( − x). Bull. Amer. Math. Soc.54 (1948) 1115–1116. Zbl0033.35902MR27375
  30. [30] Z. Qian, Optimal modified method for a fractional-diffusion inverse heat conduction problem. Inverse Probl. Sci. Engrg.18 (2010) 521–533. Zbl1195.65125MR2674752
  31. [31] W. Rundell, X. Xu and L. H. Zuo, The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. http://dx.doi.org/10.1080/00036811.2012.686605. Zbl1302.35412MR3169116
  32. [32] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl.382 (2011) 426–447. Zbl1219.35367MR2805524
  33. [33] E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance. Physica A284 (2000) 376–384. Zbl1138.91444MR1773804
  34. [34] R. Scherer, S.L. Kalla, L. Boyadjiev and B. Al-Saqabi, Numerical treatment of fractional heat equations. Appl. Numer. Math.58 (2008) 1212–1223. Zbl1143.65105MR2428973
  35. [35] R.E. Showalter, The final value problem for evolution equations. J. Math. Anal. Appl.47 (1974) 563–572. Zbl0296.34059MR352644
  36. [36] R.E. Showalter, Cauchy problem for hyper-parabolic partial differential equations. North-Holland Math. Stud.110 (1985) 421–425. Zbl0587.35044MR817519
  37. [37] I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einsteins Brownian motion. Chaos15 (2005) 1–7. Zbl1080.82022MR2150232
  38. [38] H. Wei, W. Chen, H.G. Sun and X.C. Li, A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Probl. Sci. Engrg.18 (2010) 945–956. Zbl1204.65116MR2743232
  39. [39] W. Wyss, The fractional diffusion equation. J. Math. Phys.27 (1986) 2782–2785. Zbl0632.35031MR861345
  40. [40] M. Yang and J.J. Liu, Solving a final value fractional diffusion problem by boundary condition regularization. Appl. Numer. Math.66 (2013) 45–58. Zbl1269.65093MR3018647
  41. [41] P. Zhang and F. Liu. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput.22 (2006) 87–99. Zbl1140.65094MR2323899
  42. [42] Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation. Inverse Probl. 27 (2011) 035010. Zbl1211.35280MR2772529
  43. [43] G.H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math.233 (2010) 2631–2640. Zbl1186.65128MR2577848
  44. [44] G.H. Zheng and T. Wei, A new regularization method for a Cauchy problem of the time fractional diffusion equation. Advances Comput. Math.36 (2012) 377–398. Zbl1245.35145MR2886197
  45. [45] G.H. Zheng and T. Wei, Two regularization methods for solving a riesz-feller space-fractional backward diffusion problem. Inverse Probl. 26 (2010) 115017. Zbl1206.65226MR2732909
  46. [46] P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput.22 (2006) 87–99. Zbl1140.65094MR2323899

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.