Derivation of Langevin dynamics in a nonzero background flow field

Matthew Dobson; Frédéric Legoll; Tony Lelièvre; Gabriel Stoltz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 6, page 1583-1626
  • ISSN: 0764-583X

Abstract

top
We propose a derivation of a nonequilibrium Langevin dynamics for a large particle immersed in a background flow field. A single large particle is placed in an ideal gas heat bath composed of point particles that are distributed consistently with the background flow field and that interact with the large particle through elastic collisions. In the limit of small bath atom mass, the large particle dynamics converges in law to a stochastic dynamics. This derivation follows the ideas of [P. Calderoni, D. Dürr and S. Kusuoka, J. Stat. Phys. 55 (1989) 649–693. D. Dürr, S. Goldstein and J. Lebowitz, Z. Wahrscheinlichkeit 62 (1983) 427–448. D. Dürr, S. Goldstein and J.L. Lebowitz. Comm. Math. Phys. 78 (1981) 507–530.] and provides extensions to handle the nonzero background flow. The derived nonequilibrium Langevin dynamics is similar to the dynamics in [M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Phys. A 299 (2001) 412–426]. Some numerical experiments illustrate the use of the obtained dynamic to simulate homogeneous liquid materials under shear flow.

How to cite

top

Dobson, Matthew, et al. "Derivation of Langevin dynamics in a nonzero background flow field." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1583-1626. <http://eudml.org/doc/273269>.

@article{Dobson2013,
abstract = {We propose a derivation of a nonequilibrium Langevin dynamics for a large particle immersed in a background flow field. A single large particle is placed in an ideal gas heat bath composed of point particles that are distributed consistently with the background flow field and that interact with the large particle through elastic collisions. In the limit of small bath atom mass, the large particle dynamics converges in law to a stochastic dynamics. This derivation follows the ideas of [P. Calderoni, D. Dürr and S. Kusuoka, J. Stat. Phys. 55 (1989) 649–693. D. Dürr, S. Goldstein and J. Lebowitz, Z. Wahrscheinlichkeit 62 (1983) 427–448. D. Dürr, S. Goldstein and J.L. Lebowitz. Comm. Math. Phys. 78 (1981) 507–530.] and provides extensions to handle the nonzero background flow. The derived nonequilibrium Langevin dynamics is similar to the dynamics in [M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Phys. A 299 (2001) 412–426]. Some numerical experiments illustrate the use of the obtained dynamic to simulate homogeneous liquid materials under shear flow.},
author = {Dobson, Matthew, Legoll, Frédéric, Lelièvre, Tony, Stoltz, Gabriel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonequilibrium; Langevin dynamics; multiscale; molecular simulation},
language = {eng},
number = {6},
pages = {1583-1626},
publisher = {EDP-Sciences},
title = {Derivation of Langevin dynamics in a nonzero background flow field},
url = {http://eudml.org/doc/273269},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Dobson, Matthew
AU - Legoll, Frédéric
AU - Lelièvre, Tony
AU - Stoltz, Gabriel
TI - Derivation of Langevin dynamics in a nonzero background flow field
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1583
EP - 1626
AB - We propose a derivation of a nonequilibrium Langevin dynamics for a large particle immersed in a background flow field. A single large particle is placed in an ideal gas heat bath composed of point particles that are distributed consistently with the background flow field and that interact with the large particle through elastic collisions. In the limit of small bath atom mass, the large particle dynamics converges in law to a stochastic dynamics. This derivation follows the ideas of [P. Calderoni, D. Dürr and S. Kusuoka, J. Stat. Phys. 55 (1989) 649–693. D. Dürr, S. Goldstein and J. Lebowitz, Z. Wahrscheinlichkeit 62 (1983) 427–448. D. Dürr, S. Goldstein and J.L. Lebowitz. Comm. Math. Phys. 78 (1981) 507–530.] and provides extensions to handle the nonzero background flow. The derived nonequilibrium Langevin dynamics is similar to the dynamics in [M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Phys. A 299 (2001) 412–426]. Some numerical experiments illustrate the use of the obtained dynamic to simulate homogeneous liquid materials under shear flow.
LA - eng
KW - nonequilibrium; Langevin dynamics; multiscale; molecular simulation
UR - http://eudml.org/doc/273269
ER -

References

top
  1. [1] M.P. Allen and D.J. Tildesley, Computer simulation of liquids. Clarendon Press, New York, NY, USA (1989). Zbl0703.68099
  2. [2] P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley and Sons Inc., New York, second edition (1999). Zbl0172.21201MR1700749
  3. [3] P. Calderoni, D. Dürr and S. Kusuoka, A mechanical model of Brownian motion in half-space. J. Stat. Phys.55 (1989) 649–693. Zbl0713.60111MR1003533
  4. [4] G. Ciccotti, R. Kapral and A. Sergi, Non-equilibrium molecular dynamics. In Handbook of Materials Modeling, edited by S. Yip (2005) 745–761. 
  5. [5] R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004). Zbl1052.91043MR2042661
  6. [6] D. Dürr, S. Goldstein and J. Lebowitz, A mechanical model for the Brownian motion of a convex body. Z. Wahrscheinlichkeit62 (1983) 427–448. Zbl0505.60089MR690569
  7. [7] D. Dürr, S. Goldstein and J.L. Lebowitz. A mechanical model of Brownian motion. Comm. Math. Phys.78 (1981) 507–530. Zbl0457.60086MR606461
  8. [8] B. Edwards, C. Baig and D. Keffer, A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys. 124 (2006). 
  9. [9] D.J. Evans and G.P. Morriss, Statistical mechanics of nonequilibrium liquids. ANU E Press, Canberra (2007). Zbl1145.82301
  10. [10] N.G. Hadjiconstantinou, Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics. Bull. Pol. Acad. Sci-Te. 53 (2005) 335–342. Zbl1194.76019
  11. [11] J.H. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817–829. MR37240
  12. [12] R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with Langevin dynamics. Multiscale Model. Simul.10 (2012) 191–216. Zbl1246.82092MR2902604
  13. [13] P. Kotelenez, Stochastic ordinary and stochastic partial differential equations. In vol. 58 of Stoch. Modell. Appl. Probab. (2008). Zbl1159.60004MR2370567
  14. [14] T.G. Kurtz, Semigroups of conditioned shifts and approximation of Markov processes. Ann. Probab.3 (1975) 618–642. Zbl0318.60026MR383544
  15. [15] S. Kusuoka and S. Liang, A Classical Mechanical Model of Brownian Motion with Plural Particles. Rev. Math. Phys.22 (2010) 733–838. Zbl05793862MR2673695
  16. [16] C. Le Bris and T. Lelièvre, Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Sci. China Math.55 (2012) 353–384. Zbl06040076MR2886543
  17. [17] F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal.184 (2007) 449–463. Zbl1122.82002MR2299758
  18. [18] F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity22 (2009) 1673–1694. Zbl1173.37066MR2519685
  19. [19] M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Generalized Langevin equation for nonequilibrium systems. Phys. A299 (2001) 412–426. Zbl0972.82060
  20. [20] S.T. O’Connell and P.A. Thompson, Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E 52 (1995) R5792–R5795. 
  21. [21] W. Ren and W. E, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1–26. Zbl1143.76541MR2121901
  22. [22] R. Rowley and M. Painter, Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. Int. J. Thermophys.18 (1997) 1109–1121. 
  23. [23] A.V. Skorokhod, Limit theorems for Markov processes. Theor. Probab. Appl.3 (1958) 202–246. Zbl0090.35501
  24. [24] T. Soddemann, B. Dünweg and K. Kremer, Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68 (2003) 046702. 
  25. [25] B. Todd and P.J. Daivis, A new algorithm for unrestricted duration nonequilibrium molecular dynamics simulations of planar elongational flow. Comput. Phys. Commun.117 (1999) 191–199. 
  26. [26] B.D. Todd and P.J. Daivis, Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simulat.33 (2007) 189–229. Zbl1112.76057
  27. [27] M.E. Tuckerman, C.J. Mundy, S. Balasubramanian and M.L. Klein, Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys.106 (1997) 5615–5621. 
  28. [28] T. Werder, J.H. Walther and P. Koumoutsakos, Hybrid atomistic-continuum method for the simulation of dense fluid flows. J. Comp. Phys.205 (2005) 373–390. Zbl1087.76542MR2132314

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.