The periodic unfolding method for a class of parabolic problems with imperfect interfaces
- Volume: 48, Issue: 5, page 1279-1302
 - ISSN: 0764-583X
 
Access Full Article
topAbstract
topHow to cite
topYang, Zhanying. "The periodic unfolding method for a class of parabolic problems with imperfect interfaces." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.5 (2014): 1279-1302. <http://eudml.org/doc/273291>.
@article{Yang2014,
	abstract = {In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ −1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189–222]. We also get the corrector results.},
	author = {Yang, Zhanying},
	journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
	keywords = {periodic unfolding method; heat equation; interface problems; homogenization; correctors; heat transfer; imperfect interfaces; periodic unfolding; contrasted media; strong convergence results; corrector estimates},
	language = {eng},
	number = {5},
	pages = {1279-1302},
	publisher = {EDP-Sciences},
	title = {The periodic unfolding method for a class of parabolic problems with imperfect interfaces},
	url = {http://eudml.org/doc/273291},
	volume = {48},
	year = {2014},
}
TY  - JOUR
AU  - Yang, Zhanying
TI  - The periodic unfolding method for a class of parabolic problems with imperfect interfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 2014
PB  - EDP-Sciences
VL  - 48
IS  - 5
SP  - 1279
EP  - 1302
AB  - In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ −1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189–222]. We also get the corrector results.
LA  - eng
KW  - periodic unfolding method; heat equation; interface problems; homogenization; correctors; heat transfer; imperfect interfaces; periodic unfolding; contrasted media; strong convergence results; corrector estimates
UR  - http://eudml.org/doc/273291
ER  - 
References
top- [1] S. Brahim-Otsman, G.A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl.71 (1992) 197–231. Zbl0837.35016MR1172450
 - [2] D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press (1999). Zbl0939.35001MR1765047
 - [3] D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes. SIAM J. Math. Anal.44 (2012) 718–760. Zbl1250.49017MR2914248
 - [4] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C.R. Acad. Sci., Paris, Sér. I, Math. 335 (2002) 99–104. Zbl1001.49016MR1921004
 - [5] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal.40 (2008) 1585–1620. Zbl1167.49013MR2466168
 - [6] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006) 467–496. Zbl1119.49014MR2287278
 - [7] H.S. Carslaw and J.C. Jaeger, Conduction of heat in solids. Clarendon Press, Oxford (1947). Zbl0029.37801MR22294
 - [8] P. Donato, Some corrector results for composites with imperfect interface. Rend. Mat. Appl., VII. Ser. 26 (2006) 189–209. Zbl1129.35008MR2275293
 - [9] P. Donato, L. Faella and S Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. 87 (2007) 119–143. Zbl1112.35017MR2296803
 - [10] P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal.40 (2009) 1952–1978. Zbl1197.35029MR2471907
 - [11] P. Donato and E.C. Jose, Corrector results for a parabolic problem with a memory effect. ESAIM: M2AN 44 (2010) 421–454. Zbl1195.35038MR2666650
 - [12] P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl.2 (2004) 247–273. Zbl1083.35014MR2070449
 - [13] P. Donato, K.H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems. J. Math. Sci.176 (2011) 891–927. Zbl1290.35018MR2838982
 - [14] P. Donato and A. Nabil, Homogenization and correctors for the heat equation in perforated domains. Ricerche Mat.50 (2001) 115-144. Zbl1102.35305MR1941824
 - [15] P. Donato and Z. Yang, The periodic unfolding method for the wave equations in domains with holes. Adv. Math. Sci. Appl.22 (2012) 521–551. Zbl1295.35043MR3100008
 - [16] L. Faella and S. Monsurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107–121. Zbl1114.74048MR2313177
 - [17] F. Gaveau, Homogénéisation et correcteurs pour quelques problèmes hyperboliques, Ph.D. Thesis, University of Paris VI, France (2009).
 - [18] E.C. Jose, Homogenization of a parabolic problem with an imperfect interface. Rev. Roum. Math. Pures Appl.54 (2009) 189–222. Zbl1199.35015MR2562269
 - [19] S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl.13 (2003) 43–63. Zbl1052.35022MR2002395
 - [20] S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl.14 (2004) 375–377. Zbl1069.35500MR2083635
 - [21] L. Tartar, Quelques remarques sur l’homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar, 1976. Jpn. Soc. Promot. Sci. (1978) 468-482.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.