Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation
Snorre H. Christiansen; Claire Scheid
- Volume: 45, Issue: 4, page 739-760
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChristiansen, Snorre H., and Scheid, Claire. "Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.4 (2011): 739-760. <http://eudml.org/doc/273313>.
@article{Christiansen2011,
abstract = {As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.},
author = {Christiansen, Snorre H., Scheid, Claire},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {waves; Maxwell Klein Gordon; non-linear constraints; finite elements; convergence analysis; geometric wave equation, Maxwell-Klein-Gordon equation},
language = {eng},
number = {4},
pages = {739-760},
publisher = {EDP-Sciences},
title = {Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation},
url = {http://eudml.org/doc/273313},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Christiansen, Snorre H.
AU - Scheid, Claire
TI - Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 4
SP - 739
EP - 760
AB - As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
LA - eng
KW - waves; Maxwell Klein Gordon; non-linear constraints; finite elements; convergence analysis; geometric wave equation, Maxwell-Klein-Gordon equation
UR - http://eudml.org/doc/273313
ER -
References
top- [1] R.A Adams and J.J.F. Fournier, Sobolev Spaces – Pure and Applied Mathematics Series. Second edition, Elsevier (2003). Zbl1098.46001MR2424078
- [2] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006) 1–155. Zbl1185.65204MR2269741
- [3] S. Bartels, X. Fenga and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal.46 (2007) 61–87. Zbl1160.65050MR2377255
- [4] A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The mathematics of finite elements and applications VI, J. Whiteman Ed., Academic Press, London (1988) 137–144. Zbl0692.65053MR956893
- [5] J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comput.71 (2001) 147–156. Zbl0989.65122MR1862992
- [6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002). Zbl0804.65101MR1894376
- [7] S.H. Christiansen, Résolution des équations intégrales pour la diffraction d'ondes accoustiques et électromagnétiques. Ph.D. thesis, École polytechnique, France (2002).
- [8] S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the Electric Field Integral Equation. Math. Comput.73 (2004) 143–167. Zbl1034.65089MR2034114
- [9] S.H. Christiansen, Constraint preserving schemes for gauge invariant wave equations. SIAM J. Sci. Comput.31 (2009) 1448–1469. Zbl1202.65122MR2486838
- [10] S.H. Christiansen and R. Winther, On constraint preservation in numerical simulations of Yang-Mills equations. SIAM J. Sci. Comput.28 (2006) 75–101. Zbl1115.70003MR2219288
- [11] S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput.77 (2007) 813–829. Zbl1140.65081MR2373181
- [12] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17–351. Zbl0875.65086MR1115237
- [13] M. Crouzeix and V. Thomée, The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput.48 (1987) 521–532. Zbl0637.41034MR878688
- [14] J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in Lq of the L2-projection into finite element function spaces. Numer. Math.23 (1975) 193–197. Zbl0297.41022MR383789
- [15] F. Dubois, Discrete vector potential representation of a divergence free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal.27 (1990) 1103–1141. Zbl0717.65086MR1061122
- [16] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. Commun. Math. Phys.82 (1981) 1–28. Zbl0486.35048MR638511
- [17] V. Girault and P.-A. Raviart, Finite Element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin (1986). Zbl0413.65081MR548867
- [18] F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 36 (1989) 479–490. Zbl0698.65067MR1039483
- [19] S. Klainerman, Mathematical challenges of general relativity. Rend. Mat. Appl.27 (2007) 105–122. Zbl1215.35157MR2361024
- [20] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J.74 (1994) 19–44. Zbl0818.35123MR1271462
- [21] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in R3+1. Ann. Math.142 (1995) 39–119. Zbl0827.53056MR1338675
- [22] E.H. Lieb and M. Loss, Analysis Graduate Studies in Mathematics 14. Second edition, AMS (2001). Zbl0966.26002MR1817225
- [23] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1. Dunod, Paris (1968). Zbl0165.10801MR247243
- [24] N. Masmoudi and K. Nakanishi, Uniqueness of Finite Energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Commun. Math. Phys.243 (2003) 123–136. Zbl1029.35199MR2020223
- [25] P. Monk, Finite Element Methods for Maxwell's Equations. Oxford Science Publication (2003). Zbl1024.78009
- [26] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput.77 (2008) 633–649. Zbl1136.78016
- [27] S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge. Commun. Partial Differ. Equ.35 (2010) 1029–1057. Zbl1193.35164MR2753627
- [28] J. Shatah and M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics 2. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence (1998). Zbl0993.35001MR1674843
- [29] C.G. Simader, On Dirichlet Boundary Value Problem. Springer-Verlag (1972). Zbl0242.35027
- [30] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura. Appl.146 (1987) 65–96. Zbl0629.46031MR916688
- [31] T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differ. Equ.189 (2003) 366–382. Zbl1017.81037MR1964470
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.