Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation

Snorre H. Christiansen; Claire Scheid

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 4, page 739-760
  • ISSN: 0764-583X

Abstract

top
As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.

How to cite

top

Christiansen, Snorre H., and Scheid, Claire. "Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.4 (2011): 739-760. <http://eudml.org/doc/273313>.

@article{Christiansen2011,
abstract = {As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.},
author = {Christiansen, Snorre H., Scheid, Claire},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {waves; Maxwell Klein Gordon; non-linear constraints; finite elements; convergence analysis; geometric wave equation, Maxwell-Klein-Gordon equation},
language = {eng},
number = {4},
pages = {739-760},
publisher = {EDP-Sciences},
title = {Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation},
url = {http://eudml.org/doc/273313},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Christiansen, Snorre H.
AU - Scheid, Claire
TI - Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 4
SP - 739
EP - 760
AB - As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
LA - eng
KW - waves; Maxwell Klein Gordon; non-linear constraints; finite elements; convergence analysis; geometric wave equation, Maxwell-Klein-Gordon equation
UR - http://eudml.org/doc/273313
ER -

References

top
  1. [1] R.A Adams and J.J.F. Fournier, Sobolev Spaces – Pure and Applied Mathematics Series. Second edition, Elsevier (2003). Zbl1098.46001MR2424078
  2. [2] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006) 1–155. Zbl1185.65204MR2269741
  3. [3] S. Bartels, X. Fenga and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal.46 (2007) 61–87. Zbl1160.65050MR2377255
  4. [4] A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The mathematics of finite elements and applications VI, J. Whiteman Ed., Academic Press, London (1988) 137–144. Zbl0692.65053MR956893
  5. [5] J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comput.71 (2001) 147–156. Zbl0989.65122MR1862992
  6. [6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002). Zbl0804.65101MR1894376
  7. [7] S.H. Christiansen, Résolution des équations intégrales pour la diffraction d'ondes accoustiques et électromagnétiques. Ph.D. thesis, École polytechnique, France (2002). 
  8. [8] S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the Electric Field Integral Equation. Math. Comput.73 (2004) 143–167. Zbl1034.65089MR2034114
  9. [9] S.H. Christiansen, Constraint preserving schemes for gauge invariant wave equations. SIAM J. Sci. Comput.31 (2009) 1448–1469. Zbl1202.65122MR2486838
  10. [10] S.H. Christiansen and R. Winther, On constraint preservation in numerical simulations of Yang-Mills equations. SIAM J. Sci. Comput.28 (2006) 75–101. Zbl1115.70003MR2219288
  11. [11] S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput.77 (2007) 813–829. Zbl1140.65081MR2373181
  12. [12] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17–351. Zbl0875.65086MR1115237
  13. [13] M. Crouzeix and V. Thomée, The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput.48 (1987) 521–532. Zbl0637.41034MR878688
  14. [14] J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in Lq of the L2-projection into finite element function spaces. Numer. Math.23 (1975) 193–197. Zbl0297.41022MR383789
  15. [15] F. Dubois, Discrete vector potential representation of a divergence free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal.27 (1990) 1103–1141. Zbl0717.65086MR1061122
  16. [16] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. Commun. Math. Phys.82 (1981) 1–28. Zbl0486.35048MR638511
  17. [17] V. Girault and P.-A. Raviart, Finite Element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin (1986). Zbl0413.65081MR548867
  18. [18] F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 36 (1989) 479–490. Zbl0698.65067MR1039483
  19. [19] S. Klainerman, Mathematical challenges of general relativity. Rend. Mat. Appl.27 (2007) 105–122. Zbl1215.35157MR2361024
  20. [20] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J.74 (1994) 19–44. Zbl0818.35123MR1271462
  21. [21] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in R3+1. Ann. Math.142 (1995) 39–119. Zbl0827.53056MR1338675
  22. [22] E.H. Lieb and M. Loss, Analysis Graduate Studies in Mathematics 14. Second edition, AMS (2001). Zbl0966.26002MR1817225
  23. [23] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1. Dunod, Paris (1968). Zbl0165.10801MR247243
  24. [24] N. Masmoudi and K. Nakanishi, Uniqueness of Finite Energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Commun. Math. Phys.243 (2003) 123–136. Zbl1029.35199MR2020223
  25. [25] P. Monk, Finite Element Methods for Maxwell's Equations. Oxford Science Publication (2003). Zbl1024.78009
  26. [26] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput.77 (2008) 633–649. Zbl1136.78016
  27. [27] S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge. Commun. Partial Differ. Equ.35 (2010) 1029–1057. Zbl1193.35164MR2753627
  28. [28] J. Shatah and M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics 2. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence (1998). Zbl0993.35001MR1674843
  29. [29] C.G. Simader, On Dirichlet Boundary Value Problem. Springer-Verlag (1972). Zbl0242.35027
  30. [30] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura. Appl.146 (1987) 65–96. Zbl0629.46031MR916688
  31. [31] T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differ. Equ.189 (2003) 366–382. Zbl1017.81037MR1964470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.