Efficient trust region method for nonlinear least squares
Kybernetika (1996)
- Volume: 32, Issue: 2, page 105-120
- ISSN: 0023-5954
Access Full Article
topHow to cite
topLukšan, Ladislav. "Efficient trust region method for nonlinear least squares." Kybernetika 32.2 (1996): 105-120. <http://eudml.org/doc/27332>.
@article{Lukšan1996,
author = {Lukšan, Ladislav},
journal = {Kybernetika},
keywords = {nonlinear least squares problems; convergence; trust region method; iteration; numerical experiments},
language = {eng},
number = {2},
pages = {105-120},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Efficient trust region method for nonlinear least squares},
url = {http://eudml.org/doc/27332},
volume = {32},
year = {1996},
}
TY - JOUR
AU - Lukšan, Ladislav
TI - Efficient trust region method for nonlinear least squares
JO - Kybernetika
PY - 1996
PB - Institute of Information Theory and Automation AS CR
VL - 32
IS - 2
SP - 105
EP - 120
LA - eng
KW - nonlinear least squares problems; convergence; trust region method; iteration; numerical experiments
UR - http://eudml.org/doc/27332
ER -
References
top- M. Al-Baali R. Fletcher, Variational methods for nonlinear least squares, J. Optim. Theory Appl. 36 (1985), 405-421. (1985)
- J. E. Dennis D. M. Gay R. E. Welsch, An adaptive nonlinear least-squares algorithm, ACM Trans. Math. Software 7 (1981), 348-368. (1981)
- J. E. Dennis H. H. W. Mei, An Unconstrained Optimization Algorithm which Uses Function and Gradient Values, Research Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975. (1975)
- R. Fletcher, A Modified Marquardt Subroutine for Nonlinear Least Squares, Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971. (1971)
- R. Fletcher C. Xu, Hybrid methods for nonlinear least squares, IMA J. Numer. Anal. 7 (1987), 371-389. (1987) Zbl0648.65051MR0968531
- P. E. Gill W. Murray, Newton type methods for unconstrained and linearly constrained optimization, Math. Programming 7 (1974), 311-350. (1974) MR0356503
- M. D. Hebden, An Algorithm for Minimization Using Exact Second Derivatives, Research Report No.TP515, Theoretical Physics Division, A.E.R.E. Harwell 1973. (1973)
- K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2 (1944), 164-168. (1944) MR0010666
- L. Lukšan, Computational experience with improved variable metric methods for unconstrained minimization, Kybernetika 26 (1990), 415-431. (1990) MR1079679
- D. W. Marquardt, An algorithm for least squares estimation of non-linear parameters, SIAM J. Appl. Math. 11 (1963), 431-441. (1963) MR0153071
- J. Militký, Mathematical Models Building. VI, Mineo, Technical House, Ostrava 1989. (1989)
- J. Militký O. Šenkýř L. Rudišar, Comparison of statistical software for nonlinear regression on IBM PC, In: COMPSTAT 90, Short communications, 1990, pp. 49-50. (1990)
- J. J. Moré, The Levenberg-Marquardt algorithm. Implementation and theory, In: Numerical Analysis (G. A. Watson ed.), Springer Verlag, Berlin 1978. (1978) MR0483445
- J. J. Moré B. S. Garbow K. E. Hillström, Testing unconstrained optimization software, ACM Trans. Math. Software 7 (1981) 17-41. (1981) MR0607350
- J. J. Moré D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. (1983) MR0723110
- M. J. D. Powell, A new algorithm for unconstrained optimization, In: Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter, eds.), Academic Press, London 1970. (1970) Zbl0228.90043MR0272162
- R. B. Schnabel E. Eskow, A new Choleski factorization, SIAM J. Sci. Statist. Comput. 11 (1990), 1136-1158. (1990) MR1068501
- G. A. Shultz R. B. Schnabel R. H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. Numer. Anal. 22 (1985) 47-67. (1985) MR0772882
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.