Radiation conditions at the top of a rotational cusp in the theory of water-waves

Sergey A. Nazarov; Jari Taskinen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 5, page 947-979
  • ISSN: 0764-583X

Abstract

top
We study the linearized water-wave problem in a bounded domain (e.g.a finite pond of water) of 3 , having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point 𝒪 of the water surface, where a submerged body touches the surface (see Fig. 1). The radiation conditions emerge from the requirement that the linear operator associated to the problem be Fredholm of index zero in relevant weighted function spaces with separated asymptotics. The classification of incoming and outgoing (seen from 𝒪 ) waves and the unitary scattering matrix are introduced.

How to cite

top

Nazarov, Sergey A., and Taskinen, Jari. "Radiation conditions at the top of a rotational cusp in the theory of water-waves." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.5 (2011): 947-979. <http://eudml.org/doc/273340>.

@article{Nazarov2011,
abstract = {We study the linearized water-wave problem in a bounded domain (e.g.a finite pond of water) of $\{\mathbb \{R\}\}^3$, having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point $\{\mathcal \{O\}\}$ of the water surface, where a submerged body touches the surface (see Fig. 1). The radiation conditions emerge from the requirement that the linear operator associated to the problem be Fredholm of index zero in relevant weighted function spaces with separated asymptotics. The classification of incoming and outgoing (seen from $\{\mathcal \{O\}\}$) waves and the unitary scattering matrix are introduced.},
author = {Nazarov, Sergey A., Taskinen, Jari},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {linear water-wave problem; cuspidal domain; radiation condition; scattering matrix},
language = {eng},
number = {5},
pages = {947-979},
publisher = {EDP-Sciences},
title = {Radiation conditions at the top of a rotational cusp in the theory of water-waves},
url = {http://eudml.org/doc/273340},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Nazarov, Sergey A.
AU - Taskinen, Jari
TI - Radiation conditions at the top of a rotational cusp in the theory of water-waves
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 5
SP - 947
EP - 979
AB - We study the linearized water-wave problem in a bounded domain (e.g.a finite pond of water) of ${\mathbb {R}}^3$, having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point ${\mathcal {O}}$ of the water surface, where a submerged body touches the surface (see Fig. 1). The radiation conditions emerge from the requirement that the linear operator associated to the problem be Fredholm of index zero in relevant weighted function spaces with separated asymptotics. The classification of incoming and outgoing (seen from ${\mathcal {O}}$) waves and the unitary scattering matrix are introduced.
LA - eng
KW - linear water-wave problem; cuspidal domain; radiation condition; scattering matrix
UR - http://eudml.org/doc/273340
ER -

References

top
  1. [1] F.L. Bakharev and S.A. Nazarov, On the structure of the spectrum of the elasticity problem for a body with a super-sharp spike. Sibirsk. Mat. Zh. 50 (2009) 746–756. (English transl. Siberian Math. J. 50 (2009).) Zbl1224.35395MR2583612
  2. [2] M.S. Birman and M.Z. Solomyak, Spectral theory of self–adjoint operators in Hilber space. Reidel Publ. Company, Dordrecht (1986). Zbl0744.47017
  3. [3] A.-S. Bonnet-Ben Dhia, P. Joly, Mathematical analysis of guided water waves. SIAM J. Appl. Math. 53 (1993). Zbl0787.76007MR1247167
  4. [4] G. Cardone, S.A. Nazarov and J. Sokolowski, Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary. Asymptotic Analysis62 (2009) 41–88. Zbl1175.35040MR2514663
  5. [5] G. Cardone, S.A. Nazarov and J. Taskinen, The “absorption" effect caused by beak-shaped boundary irregularity for elastic waves. Dokl. Ross. Akad. Nauk. 425 (2009) 182–186. (English transl. Doklady Physics 54 (2009) 146–150.) Zbl05620089MR2537138
  6. [6] G. Cardone, S.A. Nazarov and J. Taskinen, Criteria for the existence of the essential spectrum for beak–shaped elastic bodies. J. Math. Pures Appl. (to appear) Zbl05653511
  7. [7] D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc.352 (2000) 4207–4236. Zbl0947.35072MR1650081
  8. [8] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension. Math. Annal.335 (2006) 767–785. Zbl1220.35103MR2232016
  9. [9] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Die Grundlehren der mathematischen Wissenschaften 224. Springer, Berlin (1977). Zbl0361.35003MR473443
  10. [10] D.S. Jones, The eigenvalues of 2 u + λ u = 0 when the boundary conditions are given on semi-infinite domains. Proc. Camb. Phil. Soc.49 (1953) 668–684. Zbl0051.07704MR58086
  11. [11] V.A. Kondratiev, Boundary value problems for elliptic problems in domains with conical or corner points. Trudy Moskov. Mat. Obshch. 16 (1967) 209–292. (English transl. Trans. Moscow Mat. Soc. 16 (1967) 227–313.) Zbl0194.13405MR226187
  12. [12] V.A. Kozlov, V.G. Maz'ya and J. Rossmann, Elliptic boundary value problems in domains with point singularities. Mathematical Surveys and Monographs 52. American Mathematical Society, Providence, RI (1997). Zbl0947.35004MR1469972
  13. [13] V.A. Kozlov, V.G. Maz'ya and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations. Mathematical Surveys and Monographs 85. American Mathematical Society, Providence, RI (2001). Zbl0965.35003MR1788991
  14. [14] V.V. Krylov, New type of vibration dampers utilising the effect of acoustic “black holes". Acta Acustica united with Acustica90 (2004) 830–837. 
  15. [15] N. Kuznetsov, V. Maz'ya and B. Vainberg, Linear Water Waves. Cambridge University Press, Cambridge (2002). Zbl0996.76001MR1925354
  16. [16] O.A. Ladyzhenskaya, Boundary value problems of mathematical physics. Springer Verlag, New York (1985). Zbl0588.35003MR793735
  17. [17] J.L. Lions and E. Magenes, Non-homogeneus boundary value problems and applications (French). Dunod, Paris (1968). (English transl. Springer-Verlag, Berlin-Heidelberg-New York (1972).) Zbl0223.35039
  18. [18] V. Mazya, Sobolev spaces, translated from the Russian by T.O. Shaposhnikova. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Zbl1217.46002MR817985
  19. [19] V.G. Maz'ya and B.A. Plamenevskii, The asymptotic behavior of solutions of differential equations in Hilbert space. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972) 1080–1133; erratum, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 709–710. Zbl0266.34067MR352728
  20. [20] V.G, Mazja and B.A. Plamenevskii, On coefficients in asymptotics of solutions of elliptic boundary value problems in a domain with conical points. Math. Nachr. 76 (1977) 29–60. (Engl. transl. Amer. Math. Soc. Transl. 123 (1984) 57–89.) Zbl0554.35036MR601608
  21. [21] V.G. Mazja and B.A. Plamenevskii, Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 81 (1978) 25–82. (Engl. transl. Amer. Math. Soc. Transl. (Ser. 2) 123 (1984) 1–56 .) Zbl0554.35035MR492821
  22. [22] V.G. Mazya and S.V. Poborchi, Imbedding and Extension Theorems for Functions on Non-Lipschitz Domains. SPbGU publishing (2006). 
  23. [23] M.A. Mironov, Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Soviet Physics-Acoustics34 (1988) 318–319. 
  24. [24] S.A. NazarovAsymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain. Izv. Ross. Akad. Nauk. Ser. Mat. 58 (1994) 92–120. (English transl. Math. Izvestiya 44 (1995) 91–118.) Zbl0841.35030MR1271516
  25. [25] S.A. Nazarov, On the flow of water under a still stone. Mat. Sbornik 186 (1995) 75–110. (English transl. Math. Sbornik 186 (1995) 1621–1658.) Zbl0863.35078MR1368787
  26. [26] S.A. Nazarov, A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains. Algebra Analiz. 7 (1995) 1–92. (English transl. St. Petersburg Math. J. 7 (1996) 681–748.) Zbl0859.35025MR1365812
  27. [27] S.A. Nazarov, The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes. Uspehi Mat. Nauk. 54 (1999) 77–142. (English transl. Russ. Math. Surveys. 54 (1999) 947–1014.) Zbl0970.35026MR1741662
  28. [28] S.A. Nazarov, Weighted spaces with detached asymptotics in application to the Navier-Stokes equations. in: Advances in Mathematical Fluid Mechanics. Paseky, Czech. Republic (1999) 159–191. Springer-Verlag, Berlin (2000). Zbl0974.35088MR1863212
  29. [29] S.A. Nazarov, The Navier-Stokes problem in a two-dimensional domain with angular outlets to infinity. Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov 257 (1999) 207–227. (English transl. J. Math. Sci. 108 (2002) 790–805.) Zbl0979.35115MR1754702
  30. [30] S.A. Nazarov, The spectrum of the elasticity problem for a spiked body. Sibirsk. Mat. Zh. 49 (2008) 1105–1127. (English transl. Siberian Math. J. 49 (2008) 874–893.) Zbl1224.35397MR2469058
  31. [31] S.A. Nazarov, On the spectrum of the Steklov problem in peak-shaped domains. Trudy St.-Petersburg Mat. Obshch. 14 (2008) 103–168. (English transl. Am. Math. Soc. Transl Ser. 2.) Zbl1183.35212MR2584396
  32. [32] S.A. Nazarov. On the essential spectrum of boundary value problems for systems of differential equations in a bounded peak-shaped domain. Funkt. Anal. i Prilozhen. 43 (2009) 55–67. (English transl. Funct. Anal. Appl. 43 (2009).) Zbl1271.35055MR2503865
  33. [33] S.A. Nazarov and K. Pileckas, On steady Stokes and Navier-Stokes problems with zero velocity at infinity in a three-dimensional exterior domain. Journal of Mathematics of Kyoto University40 (2000) 475–49. Zbl0976.35051MR1794517
  34. [34] S.A. Nazarov and B.A. Plamenevskii, Radiation principles for self-adjoint elliptic problems. Probl. Mat. Fiz. 13. 192–244. Leningrad: Leningrad Univ. 1991 (Russian). MR1341639
  35. [35] S.A. Nazarov and B.A. Plamenevskii, Elliptic problems in domains with piecewise smooth boundaries. Walter be Gruyter, Berlin, New York (1994). Zbl0806.35001MR1283387
  36. [36] S.A. Nazarov and O.R. Polyakova, Asymptotic behavior of the stress-strain state near a spatial singularity of the boundary of the beak tip type. Prikl. Mat. Mekh. 57 (1993) 130–149. (English transl. J. Appl. Math. Mech. 57 (1993) 887–902.) Zbl0794.73011MR1262071
  37. [37] S.A. Nazarov and S.A. Taskinen, On the spectrum of the Steklov problem in a domain with a peak. Vestnik St. Petersburg Univ. Math.41 (2008) 45–52. Zbl1171.35086MR2406898
  38. [38] S.A. Nazarov and J. Taskinen, On essential and continuous spectra of the linearized water-wave problem in a finite pond. Math. Scand.106 (2009) 1–20. Zbl1191.35016MR2603466
  39. [39] J. Peetre, Another approach to elliptic boundary problems. Comm. Pure. Appl. Math.14 (1961) 711–731. Zbl0104.07303MR171069
  40. [40] B.A. Plamenevskii, The asymptotic behavior of the solutions of quasielliptic differential equations with operator coefficients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 1332–1375. Zbl0285.35029MR372656
  41. [41] J.J. Stoker, Water waves. The Mathematical Theory with Applications. Reprint of the 1957 original. John Wiley, New York (1992). Zbl0812.76002MR1153414
  42. [42] F. Ursell, Trapping modes in the theory of surface waves. Proc. Camb. Phil. Soc.47 (1951) 347–358. Zbl0043.40704MR41604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.