# Hexahedral H(div) and H(curl) finite elements

Richard S. Falk; Paolo Gatto; Peter Monk

- Volume: 45, Issue: 1, page 115-143
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topFalk, Richard S., Gatto, Paolo, and Monk, Peter. "Hexahedral H(div) and H(curl) finite elements." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.1 (2011): 115-143. <http://eudml.org/doc/273342>.

@article{Falk2011,

abstract = {We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to insure O(h) approximation in L2(Ω) and in H(div;Ω) and H(curl;Ω) on the physical element, we study the properties of the resulting finite element spaces.},

author = {Falk, Richard S., Gatto, Paolo, Monk, Peter},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {hexahedral finite element; hexahedral finite element spaces; ; Ωmathvariantupright); ; Ωmathvariantupright)},

language = {eng},

number = {1},

pages = {115-143},

publisher = {EDP-Sciences},

title = {Hexahedral H(div) and H(curl) finite elements},

url = {http://eudml.org/doc/273342},

volume = {45},

year = {2011},

}

TY - JOUR

AU - Falk, Richard S.

AU - Gatto, Paolo

AU - Monk, Peter

TI - Hexahedral H(div) and H(curl) finite elements

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2011

PB - EDP-Sciences

VL - 45

IS - 1

SP - 115

EP - 143

AB - We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to insure O(h) approximation in L2(Ω) and in H(div;Ω) and H(curl;Ω) on the physical element, we study the properties of the resulting finite element spaces.

LA - eng

KW - hexahedral finite element; hexahedral finite element spaces; ; Ωmathvariantupright); ; Ωmathvariantupright)

UR - http://eudml.org/doc/273342

ER -

## References

top- [1] D.N. Arnold, D. Boffi, R.S. Falk and L. Gastaldi, Finite element approximation on quadrilateral meshes. Comm. Num. Meth. Eng.17 (2001) 805–812. Zbl0999.76073MR1872639
- [2] D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comp.71 (2002) 909–922. Zbl0993.65125MR1898739
- [3] D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal.42 (2005) 2429–2451. Zbl1086.65105MR2139400
- [4] I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Proc. Sympos., Univ. Maryland, Baltimore, Md. Academic Press, New York (1972) 1–359. Zbl0268.65052MR421106
- [5] A. Bermúdez, P. Gamallo, M.R. Nogeiras and R. Rodríguez, Approximation properties of lowest-order hexahedral Raviart-Thomas elements. C. R. Acad. Sci. Paris, Sér. I 340 (2005) 687–692. Zbl1071.65148MR2139278
- [6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (1994). Zbl1135.65042MR1278258
- [7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York (1991). Zbl0788.73002MR1115205
- [8] F. Dubois, Discrete vector potential representation of a divergence free vector field in three dimensional domains: Numerical analysis of a model problem. SINUM27 (1990) 1103–1142. Zbl0717.65086MR1061122
- [9] T. Dupont and R. Scott, Polynomial Approximation of Functions in Sobolev Spaces. Math. Comp.34 (1980) 441–463. Zbl0423.65009MR559195
- [10] P. Gatto, Elementi finiti su mesh di esaedri distorti per l'approssimazione di H(div) [Approximation of H(div) via finite elements over meshes of distorted hexahedra]. Master's Thesis, Dipartimento di Matematica, Università Pavia, Italy (2006).
- [11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
- [12] R.L. Naff, T.F. Russell and J.D. Wilson, Shape Functions for Velocity Interpolation in General Hexahedral Cells. Comput. Geosci.6 (2002) 285–314. Zbl1094.76542MR1956019
- [13] T.F. Russell, C.I. Heberton, L.F. Konikow and G.Z. Hornberger, A finite-volume ELLAM for three-dimensional solute-transport modeling. Ground Water41 (2003) 258–272.
- [14] P. Šolín, K. Segeth and I. Doležel, Higher Order Finite Elements Methods, Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). Zbl1032.65132
- [15] S. Zhang, On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math.98 (2004) 559–579. Zbl1065.65135MR2088927
- [16] S. Zhang, Invertible Jacobian for hexahedral finite elements. Part 1. Bijectivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective1.ps (2005).
- [17] S. Zhang, Invertible Jacobian for hexahedral finite elements. Part 2. Global positivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective2.ps (2005).
- [18] S. Zhang, Subtetrahedral test for the positive Jacobian of hexahedral elements. Preprint available at http://www.math.udel.edu/ szhang/research/p/subtettest.pdf (2005).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.