Les algèbres de Heyting-Brouwer : point de rencontre de plusieurs structures

Luisa Iturrioz

Publications du Département de mathématiques (Lyon) (1975)

  • Volume: 12, Issue: 3, page 91-113
  • ISSN: 0076-1656

How to cite

top

Iturrioz, Luisa. "Les algèbres de Heyting-Brouwer : point de rencontre de plusieurs structures." Publications du Département de mathématiques (Lyon) 12.3 (1975): 91-113. <http://eudml.org/doc/273479>.

@article{Iturrioz1975,
author = {Iturrioz, Luisa},
journal = {Publications du Département de mathématiques (Lyon)},
language = {fre},
number = {3},
pages = {91-113},
publisher = {Université Claude Bernard - Lyon 1},
title = {Les algèbres de Heyting-Brouwer : point de rencontre de plusieurs structures},
url = {http://eudml.org/doc/273479},
volume = {12},
year = {1975},
}

TY - JOUR
AU - Iturrioz, Luisa
TI - Les algèbres de Heyting-Brouwer : point de rencontre de plusieurs structures
JO - Publications du Département de mathématiques (Lyon)
PY - 1975
PB - Université Claude Bernard - Lyon 1
VL - 12
IS - 3
SP - 91
EP - 113
LA - fre
UR - http://eudml.org/doc/273479
ER -

References

top
  1. [1] Birkhoff G., Lattice theory, Amer. Math. Soc. Coll. Publ.25, 3e ed. 1967, MR 37#2638. Zbl0153.02501MR227053
  2. [2] Cignoli R., Moisil algebras, Notas de Logica matematica n° 27, Univ. Nac. del Sur, Bahia Blanca, Argentina, 1970, MR 49 # 10614, Zbl 212,317. Zbl0212.31701MR345884
  3. [3] Cignoli R., Stone filters and ideals in distributive lattices, Bull. Math.15 (1971), 131-137, MR 48 # 191, Zbl 259. 06005. Zbl0259.06005MR321824
  4. [4] Dummet M., A propositional calculus with denumerable matrix, Jour. Symb. Log.24 (1959) 97-106. MR 23 # A801. Zbl0089.24307MR123476
  5. [5] Epstein G. and Horn A., P-algebras, an abstraction from Post algebras, Alg. Univ.4 (1974) 195-206. Zbl. 294. 06010. Zbl0294.06010MR351940
  6. [6] Horn A., Logic with truth values in a linearly ordered Heyting algebra, Jour. Symb. Log.34 (1969) 395-408. MR 40 # 7089. Zbl0181.29904MR253876
  7. [7] Iturrioz L.Sur les algèbres de Heyting-Brouwer, Bull. Acad. Pol. Sci. (à paraître). Zbl0361.02070
  8. [8] Iturrioz L., Les algèbres de Heyting-Brouwer et de Lukasiewicz trivalentes, Notre Dame Jour. Fomal Log.17 (1976) 119-126. Zbl0299.02072MR429549
  9. [9] Iturrioz L., Lukasiewicz and symmetrical Heyting algebras, (à paraître). Zbl0373.02042
  10. [10] Lukasiewicz J., Selected works, ed. L. Borkowski, Studies in Logic, North-Holland, 1970. MR 45 # 3155. Zbl. 212. 9. Zbl0212.00902MR294080
  11. [11] MC Kinsey J.C.C. and Tarski A., On closed elements in closure algebra, Annals of Math.47 (1946) 122-162. MR 7, 359. Zbl0060.06207MR15037
  12. [12] Moisil GR., Recherches sur l'algèbre de la logique, Annals Sci. Univ.Jassy, 22 (1935) 1-117. Zbl0014.00202JFM62.0031.02
  13. [13] Moisil GR., Les logiques non-chrysippiennes et leurs applications, Acta Phil. Fennica, 16 (1963) 137-152. MR 28 # 2969. Zbl0126.26001MR159753
  14. [14] Monteiro A., L'arithmétique des filtres et les espaces topologiques, Segundo Symp. Latino americano de Mat.Centro de Coop. Cientifica Unesco, Montevideo (1954) 129-162. Zbl0058.38503MR74805
  15. Monteiro A., L'arithmétique des filtres et les espaces topologiques, Notas de Lógica Mat. n° 2-30, Univ. Nac. del Sur, Bahia Blanca, Argentina, 1974, MR 17, 649. Zbl0318.06019
  16. [15] Monteiro A., Axiomes indépendants pour les algèbres de Brouwer, Rev. Union Mat., Arg.17 (1955) 149-160. MR 18, 867. Zbl0072.25004MR84483
  17. [16] Monteiro A. Varsavsky O., Algebras de Heyting mondicas, Actas X Jornadas Union Mat. Arg.1957, 52-62. 
  18. Monteiro A. Varsavsky O., Algebras de Heyting monàdicas, Notas de Lógica Mat. n° 1, Bahia Blanca, Argentina, 1974. Zbl0319.02054
  19. [17] Monteiro A., Linéarisation de la logique positive de Hilbert-BernaysRev. Union Mat. Argentina, 20 (1962) 308-309. MR161785
  20. [18] Monteiro A., Linearización de la lógica positiva de Hilbert-Bernays cours donné à l'Univ. Nac. del Sur, Bahia Blanca, Argentina1964. MR1420008
  21. [19] Monteiro L., Algèbre du calcul propositionnel trivalent de HeytingFund. Math.74 (1972) 99-109. MR 45 # 4957. Zbl. 248, 02070. Zbl0248.02070MR295895
  22. [20] Rasiowa H., An algebraic approach to non-classical logics, Studies in Logic, Vol. 78, North-Holland, 1974. Zbl0299.02069MR446968
  23. [21] Rauszer C., Representation theorem for semi-Boolean algebras, I, II, Bull. Acad. Vol. Sci., 19 (1971) 881-887 ; MR 46 # 1668. Zbl 227, 02036. Zbl0227.02036MR302524
  24. Rauszer C., Representation theorem for semi-Boolean algebras, I, II, Bull. Acad. Vol. Sci.19 (1972) 889-892. Zbl0227.02036MR302524
  25. [22] Rauszer C., Semi-Boolean algebras and their application to intuitionistic logic with dual operations, Fund. Math.83 (1974) 219-249. Zbl0298.02064MR340006
  26. [23] Rosser J.B. and Turquette A.R., Many-valued logics, Studies in Logic, North-Holland, 1951, MR 14, 526. Zbl0047.01503MR51791
  27. [24] Rousseau G., Post algebras and pseudo-Post algebras, Fund. Math.67 (1970) 133-145. Zbl0198.01904MR265248
  28. [25] Varlet J., On the characterization of Stone lattices, Acta Sci. Math. (Szeged) 27 (1966) 81-84. MR 33 # 2580. Zbl0158.27102MR194370
  29. [26] Varlet J.Algèbres de Lukasiewicz trivalentes, Bull. Soc. Roy. Sci. Liège36 (1968) 399-408. MR 38 # 5676, Zbl. 175, 266. Zbl0175.26604MR237388

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.