Density smoothness estimation problem using a wavelet approach

Karol Dziedziul; Bogdan Ćmiel

ESAIM: Probability and Statistics (2014)

  • Volume: 18, page 130-144
  • ISSN: 1292-8100

Abstract

top
In this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness parameter is impossible in general case, we can show that it becomes possible for some classes of the density functions.

How to cite

top

Dziedziul, Karol, and Ćmiel, Bogdan. "Density smoothness estimation problem using a wavelet approach." ESAIM: Probability and Statistics 18 (2014): 130-144. <http://eudml.org/doc/273638>.

@article{Dziedziul2014,
abstract = {In this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness parameter is impossible in general case, we can show that it becomes possible for some classes of the density functions.},
author = {Dziedziul, Karol, Ćmiel, Bogdan},
journal = {ESAIM: Probability and Statistics},
keywords = {estimation; wavelets; Besov spaces; smoothness parameter},
language = {eng},
pages = {130-144},
publisher = {EDP-Sciences},
title = {Density smoothness estimation problem using a wavelet approach},
url = {http://eudml.org/doc/273638},
volume = {18},
year = {2014},
}

TY - JOUR
AU - Dziedziul, Karol
AU - Ćmiel, Bogdan
TI - Density smoothness estimation problem using a wavelet approach
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 130
EP - 144
AB - In this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness parameter is impossible in general case, we can show that it becomes possible for some classes of the density functions.
LA - eng
KW - estimation; wavelets; Besov spaces; smoothness parameter
UR - http://eudml.org/doc/273638
ER -

References

top
  1. [1] E. Belitser and F. Enikeeva, Empirical Bayesian Test of the Smoothness. Math. Methods Stat.17 (2008) 1–18. Zbl1282.62113MR2400361
  2. [2] A.D. Bull, A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets. Constructive Approximation37 (2013) 295–309. Zbl1302.62107MR3019781
  3. [3] A.D. Bull, Honest adaptive confidence bands and self-similar functions. Electron. J. Stat.6 (2012) 1490–1516. Zbl1295.62049MR2988456
  4. [4] T. Cai, Adaptive Wavelet Estimation: A Block Thresholding and Oracle Inequality Approach. Ann. Stat.27 (1999) 898–924. Zbl0954.62047MR1724035
  5. [5] T. Cai and M.G. Low, An adaptation theory for nonparametric confidence intervals. Ann. Stat. 32 5 (2004) 1805–1840. Zbl1056.62060MR2102494
  6. [6] T. Cai and M.G. Low, Adaptive confidence balls. Ann. Stat.34 (2006) 202–228. Zbl1091.62037MR2275240
  7. [7] E. Chicken and T. Cai, Block thresholding for density estimation: local and global adaptivity. J. Multivariate Anal.95 (2005) 76–106. Zbl1064.62036MR2164124
  8. [8] I. Daubechies, Ten lectures on wavelets. SIAM Philadelphia (1992). Zbl0776.42018MR1162107
  9. [9] D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Stat.26 (1996) 879–921. Zbl0935.62041MR1635414
  10. [10] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Stat.24 (1996) 508–539. Zbl0860.62032MR1394974
  11. [11] K. Dziedziul, M. Kucharska and B. Wolnik, Estimation of the smoothness parameter. J. Nonparametric Stat.23 (2011) 991–1001. Zbl1230.62038MR2854251
  12. [12] E. Giné and R. Nickl, Confidence bands in density estimation. Ann. Stat.38 (2010) 1122–1170. Zbl1183.62062MR2604707
  13. [13] A. Gloter and M. Hoffmann, Nonparametric reconstruction of a multifractal function from noisy data. Probab. Theory Relat. Fields 146 (2010) 155187. Zbl1179.62045MR2550361
  14. [14] P. Hall and M.C. Jones, Adaptive M-Estimation in Nonparametric Regression. Ann. Stat.18 (1990) 1712–1728. Zbl0737.62034MR1074431
  15. [15] W. Härdle, G. Kerkyacharian, D. Picard and A.B. Tsybakov, Wavelets, Approximation and Statistical Applications. Springer-Verlag, New York (1998). Zbl0899.62002MR1618204
  16. [16] M. Hoffmann and R. Nickl, On adaptive inference and confidence bands. Ann. Stat.39 (2011) 2383–2409. Zbl1232.62072MR2906872
  17. [17] L. Horvath and P. Kokoszka, Change-point detection with non parametric regression. Statistics: A J. Theoret. Appl. Stat. 36 (2002) 9–31. Zbl1010.62036MR1906372
  18. [18] Y. Ingster and N. Stepanova, Estimation and detection of functions from anisotropic Sobolev classes. Electron. J. Stat.5 (2011) 484–506. Zbl1274.62319MR2813552
  19. [19] S. Jaffard, Conjecture de Frisch et Parisi et généricité des fonctions multifractales. C. R. Acad. Sci. Paris Sér. I Math. 330 4 (2000) 265–270. Zbl0977.28007MR1753291
  20. [20] M.G. Low, On nonparametric confidence intervals. Ann. Stat.25 (1997) 2547–2554. Zbl0894.62055MR1604412
  21. [21] Y. Meyer, Wavelets and operators. In Cambridge Stud. Advanc. Math. of vol. 37. Translated from the 1990 French original by D.H. Salinger. Cambridge University Press, Cambridge. (1992). Zbl0776.42019MR1228209
  22. [22] S. Ropela, Spline bases in Besov spaces. Bull. Acad. Pol. Sci. Serie Math. astr. Phys. 24 (1976) 319–325. Zbl0328.41008MR417660
  23. [23] S.J. Sheather and M.C. Jones, A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. J. Royal Stat. Soc. Ser. B.53 (1991) 683–690. Zbl0800.62219MR1125725

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.