Adding constraints to BSDEs with jumps: an alternative to multidimensional reflections
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 233-250
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Reports60 (1997) 57–83. Zbl0878.60036MR1436432
- [2] M. Bernhart, H. Pham, P. Tankov and X. Warin, Swing Options Valuation: a BSDE with Constrained Jumps Approach. Numerical methods in finance. Edited by R. Carmona et al. Springer (2012). Zbl1247.91179
- [3] B. Bouchard, A stochastic target formulation for optimal switching problems in finite horizon. Stochastics81 (2009) 171–197. Zbl1175.60037MR2571686
- [4] B. Bouchard and R. Elie, Discrete–time approximation of decoupled forward-backward SDE with jumps. Stoch. Proc. Appl.118 (2008) 53–75. Zbl1136.60048MR2376252
- [5] J.F. Chassagneux, R. Elie and I. Kharroubi, A note on existence and uniqueness of multidimensional reflected BSDEs. Electronic Commun. Prob.16 (2011) 120–128. Zbl1232.93095MR2775350
- [6] R. Buckdahn and Y. Hu, Pricing of American contingent claims with jump stock price and constrained portfolios. Math. Oper. Res.23 (1998) 177–203. Zbl0985.91026MR1606470
- [7] Buckdahn R. and Y. Hu, Hedging contingent claims for a large investor in an incomplete market. Adv. Appl. Probab.30 (1998) 239–255. Zbl0904.90009MR1618845
- [8] R. Buckdahn, M. Quincampoix and A. Rascanu, Viability property for a backward stochastic differential equation and applications to partial differential equations. Probab. Theory Relat. Fields116 (2000) 485–504. Zbl0969.60061MR1757597
- [9] J. Cvitanic, I. Karatzas and M. Soner, Backward stochastic differential equations with constraints on the gain-process. Ann. Probab.26 (1998) 1522–1551. Zbl0935.60039MR1675035
- [10] B. Djehiche, S. Hamadène and A. Popier, The finite horizon optimal multiple switching problem. SIAM J. Control Optim.48 (2009) 2751–2770. Zbl1196.60069MR2558319
- [11] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of Backward SDE’s, and related obstacle problems for PDEs. Ann. Prob.25 (1997) 702–737. Zbl0899.60047MR1434123
- [12] R. Elie and I. Kharroubi, Probabilistic representation and approximation for coupled systems of variational inequalities. Stat. Probab. Lett.80 (2009) 1388–1396. Zbl1194.93218MR2669778
- [13] E. Essaky, Reflected backward stochastic differential equation with jumps and RCLL obstacle. Bull. Sci. Math.132 (2008) 690–710. Zbl1157.60057MR2474488
- [14] S. Hamadène and J. Zhang, Switching problem and related system of reflected BSDEs. Stoch. Proc. Appl.120 (2010) 403–426. Zbl1191.60056MR2594364
- [15] Y. Hu and S. Peng, On comparison theorem for multi-dimensional BSDEs. C. R. Acad. Sci. Paris343 (2006) 135–140. Zbl1098.60052MR2243308
- [16] Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching. Probab. Theory Relat. Fields147 (2010) 89–121. Zbl1188.60029MR2594348
- [17] I. Kharroubi, J. Ma, H. Pham and J. Zhang, Backward SDEs with constrained jumps and Quasi–Variational Inequalities. Ann. Probab.38 (2008) 794–840. Zbl1205.60114MR2642892
- [18] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control. Lett.14 (1990) 55–61. Zbl0692.93064MR1037747
- [19] E. Pardoux, F. Pradeilles and Z. Rao, Probabilistic interpretation of a system of semi-linear parabolic partial differential equations. Ann. Inst. Henri Poincaré, Section B 33 (1997) 467–490. Zbl0891.60054MR1465798
- [20] S. Peng, Monotonic limit theory of BSDE and nonlinear decomposition theorem of Doob–Meyer’s type. Probab. Theory Relat. Fields113 (1999) 473–499. Zbl0953.60059MR1717527
- [21] S. Peng and M. Xu, The smallest g-supermartingale and reflected BSDE with single and double obstacles. Ann. Inst. Henri Poincaré41 (2005) 605–630. Zbl1071.60049MR2139035
- [22] S. Peng and M. Xu, Constrained BSDE and viscosity solutions of variation inequalities. Preprint. (2007).
- [23] S. Ramasubramanian, Reflected backward stochastic differential equations in an orthant. Proc. Indian Acad. Sci.112 (2002) 347–360. Zbl1007.60061MR1908376
- [24] M. RoyerBackward stochastic differential equations with jumps and related nonlinear expectations. Stoch. Proc. Appl.116 (2006) 1358–1376. Zbl1110.60062MR2260739
- [25] S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with jumps. SIAM J. Control Optim.32 (1994) 1447–1475. Zbl0922.49021MR1288257
- [26] S. Tang and J. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach. Stoch. Stoch. Reports45 (1993) 145–176. Zbl0795.93103MR1306930