Uniform strong consistency of a frontier estimator using kernel regression on high order moments

Stéphane Girard; Armelle Guillou; Gilles Stupfler

ESAIM: Probability and Statistics (2014)

  • Volume: 18, page 642-666
  • ISSN: 1292-8100

Abstract

top
We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172–189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.

How to cite

top

Girard, Stéphane, Guillou, Armelle, and Stupfler, Gilles. "Uniform strong consistency of a frontier estimator using kernel regression on high order moments." ESAIM: Probability and Statistics 18 (2014): 642-666. <http://eudml.org/doc/273649>.

@article{Girard2014,
abstract = {We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172–189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.},
author = {Girard, Stéphane, Guillou, Armelle, Stupfler, Gilles},
journal = {ESAIM: Probability and Statistics},
keywords = {frontier estimation; kernel estimation; strong uniform consistency; Hall class},
language = {eng},
pages = {642-666},
publisher = {EDP-Sciences},
title = {Uniform strong consistency of a frontier estimator using kernel regression on high order moments},
url = {http://eudml.org/doc/273649},
volume = {18},
year = {2014},
}

TY - JOUR
AU - Girard, Stéphane
AU - Guillou, Armelle
AU - Stupfler, Gilles
TI - Uniform strong consistency of a frontier estimator using kernel regression on high order moments
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 642
EP - 666
AB - We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172–189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.
LA - eng
KW - frontier estimation; kernel estimation; strong uniform consistency; Hall class
UR - http://eudml.org/doc/273649
ER -

References

top
  1. [1] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions. Dover (1965). 
  2. [2] Y. Aragon, A. Daouia and C. Thomas-Agnan, Nonparametric frontier estimation: a conditional quantile-based approach. Econom. Theory21 (2005) 358–389. Zbl1062.62252MR2179542
  3. [3] N.H. Bingham, C.M. Goldie and J.L. Teugels. Regular Variation. Cambridge, Cambridge University Press (1987). Zbl0667.26003MR898871
  4. [4] C. Cazals, J.-P. Florens and L. Simar, Nonparametric frontier estimation: a robust approach. J. Econom.106 (2002) 1–25. Zbl1051.62116MR1875525
  5. [5] A. Daouia and L. Simar, Robust nonparametric estimators of monotone boundaries. J. Multivariate Anal.96 (2005) 311–331. Zbl1077.62021MR2204981
  6. [6] D. Deprins, L. Simar and H. Tulkens, Measuring labor efficiency in post offices, in The Performance of Public Enterprises: Concepts and Measurements. Edited by P. Pestieau, M. Marchand and H. Tulkens. Amsterdam: North Holland (1984) 243–267. 
  7. [7] U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab.13 (2000) 1–37. Zbl0995.62042MR1744994
  8. [8] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events. Springer (1997). MR1458613
  9. [9] L. Gardes and G. Stupfler, Estimation of the conditional tail-index using a smoothed local Hill estimator. Extremes17 (2014) 45–75. Zbl1302.62076MR3179970
  10. [10] J. Geffroy, Sur un problème d’estimation géométrique. Publ. Inst. Statist. Univ. Paris XIII (1964) 191–210. Zbl0129.32301MR202237
  11. [11] J. Geffroy, S. Girard and P. Jacob, Asymptotic normality of the L1 −error of a boundary estimator. Nonparametr. Stat. 18 (2006) 21–31. Zbl1096.62048MR2214062
  12. [12] S. Girard, A. Guillou and G. Stupfler, Frontier estimation with kernel regression on high order moments. J. Multivariate Anal.116 (2013) 172–189. Zbl1277.62111MR3049899
  13. [13] S. Girard, A. Iouditski and A. Nazin, L1 −optimal nonparametric frontier estimation via linear programming. Autom. Remote Control 66 (2005) 2000–2018. Zbl1267.62048MR2196469
  14. [14] S. Girard and P. Jacob, Frontier estimation via kernel regression on high power-transformed data. J. Multivariate Anal.99 (2008) 403–420. Zbl1206.62070MR2396971
  15. [15] S. Girard and P. Jacob, Frontier estimation with local polynomials and high power-transformed data. J. Multivariate Anal.100 (2009) 1691–1705. Zbl1163.62030MR2535380
  16. [16] P. Hall, On estimating the endpoint of a distribution. Ann. Statist.10 (1982) 556–568. Zbl0489.62029MR653530
  17. [17] W. Härdle, P. Janssen and R. Serfling, Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist.16 (1988) 1428–1449. Zbl0672.62050MR964932
  18. [18] W. Härdle and J.S. Marron, Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist.13 (1985) 1465–1481. Zbl0594.62043MR811503
  19. [19] W. Härdle, B.U. Park and A. Tsybakov, Estimation of non-sharp support boundaries. J. Multivariate Anal.55 (1995) 205–218. Zbl0863.62030MR1370400
  20. [20] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc.58 (1963) 13–30. Zbl0127.10602MR144363
  21. [21] P. Jacob and C. Suquet, Estimating the edge of a Poisson process by orthogonal series. J. Statist. Plann. Inference46 (1995) 215–234. Zbl0834.62075MR1354088
  22. [22] A. Korostelev, L. Simar and A. Tsybakov, Efficient estimation of monotone boundaries. Ann. Statist.23 (1995) 476–489. Zbl0829.62043MR1332577
  23. [23] M. Lemdani, E. Ould-Saïd and N. Poulin, Asymptotic properties of a conditional quantile estimator with randomly truncated data. J. Multivariate Anal.100 (2009) 546–559. Zbl1154.62027MR2483437
  24. [24] Y.P. Mack and B.W. Silverman, Weak and strong uniform consistency of kernel regression estimates. Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982) 405–415. Zbl0495.62046MR679685
  25. [25] E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl.10 (1965) 186–190. Zbl0134.36302MR172400
  26. [26] E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist.33 (1962) 1065–1076. Zbl0116.11302MR143282
  27. [27] M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist.27 (1956) 832–837. Zbl0073.14602MR79873
  28. [28] B.W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist.6 (1978) 177–184. Zbl0376.62024MR471166
  29. [29] W. Stute, A law of the iterated logarithm for kernel density estimators. Ann. Probab.10 (1982) 414–422. Zbl0493.62040MR647513

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.