On a Finite Element Method for Solving the Neutron Transport Equation

P. Lesaint; P. A. Raviart

Publications mathématiques et informatique de Rennes (1974)

  • Issue: S4, page 1-40

How to cite

top

Lesaint, P., and Raviart, P. A.. "On a Finite Element Method for Solving the Neutron Transport Equation." Publications mathématiques et informatique de Rennes (1974): 1-40. <http://eudml.org/doc/273730>.

@article{Lesaint1974,
author = {Lesaint, P., Raviart, P. A.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-40},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {On a Finite Element Method for Solving the Neutron Transport Equation},
url = {http://eudml.org/doc/273730},
year = {1974},
}

TY - JOUR
AU - Lesaint, P.
AU - Raviart, P. A.
TI - On a Finite Element Method for Solving the Neutron Transport Equation
JO - Publications mathématiques et informatique de Rennes
PY - 1974
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 40
LA - eng
UR - http://eudml.org/doc/273730
ER -

References

top
  1. [1] Axelsson, O., "A class of A-stable methods", B.I.T.9 (1969), 185-199. Zbl0208.41504MR255059
  2. [2] de Boor, C., and B. Swartz "Collocation at Gaussian points", SIAM J. Numer. Anal.10. (1973) 582-606. Zbl0232.65065MR373328
  3. [3] Butcher, J.C., "Implicit Runge-Kutta processes" Math. Comp.18 (1964), 50-64. Zbl0123.11701MR159424
  4. [4] Ciarlet, P.G., and P.A. Raviart "General Lagrange and Hermite interpolation in n with applications to finite element methods", Arch. Rat. Mech. Anal.46.(1972), 177-199. Zbl0243.41004MR336957
  5. [5] Ciarlet, P.G., and P.A. Raviart "Interpolation theory over curved elements, with applications to finite element methods", Comp. Meth. Appl. Mech. Eng.1 (1972), 217-249. Zbl0261.65079MR375801
  6. [6] Ciarlet, P.G., and P.A. Raviart "The combined effect of curved boundaries and numerical integration in isoparametric finite element methods", The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), 409-474, Academic Press, New-York, 1972. Zbl0262.65070MR421108
  7. [7] Crcuzeix, M., Thesis, to appear. Zbl05.0337.02
  8. [8] Friedrichs, K.O., "Symmetric positive differential equations", Comm. Pure Appl. Math.11 (1958), 333-418 Zbl0083.31802MR100718
  9. [9] Hulme, B.L., "Discrete Galerkin and related one-step methods differential equations", Math. Comp.26 (1972), 881-891. Zbl0272.65056MR315899
  10. [10] Kaper, H.G., G.K. Leaf and A.J. Lindeman "Application of finite element techniques for the numerical solution of the neutron transport and diffusion equations" Proc. Conf. on Transport Theory, 2nd Conf. 710107, Los Alamos (1971). 
  11. [11] Lesaint, P., "Finite element methods for symmetric hyperbolic equations", Numer. Math21 (1973), 244-255. Zbl0283.65061MR341902
  12. [12] Lesaint, P. , "Finite element methods for the transport equation", to appear in RAIRO, série Mathématiques. Zbl0313.65103MR913315
  13. [13] Lesaint, P. , Thesis, to appear. 
  14. [14] Lesaint, P., and J. Gérin-Roze "Isoparametric finite element methods for the neutron transport equation", to appear. Zbl0331.65084
  15. [15] Miller, W.F. Jr, E.E Lewis, and E.C. Rossow "The application of phase-space finite elements to the two-dimensional transport equation in x-y geometry", to appear in Nucl. Sci. Eng. 
  16. [16] Ohnishi, T., "Application of finite element solution technique to neutron diffusion and transport equations", Proc conf. on New Developments in Reactor Mathematics and Applications, CONF-710302, Idaho Falls (1971). 
  17. [17] Reed, W.H., and T.R. Hill "Triangular mesh methods for the neutron transport equation" to appear in Proc. Amer. Nucl. Soc. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.