Étude des oscillations d'un processus de sauts purs à l'aide d'un processus de diffusion

J. Pellaumail

Publications mathématiques et informatique de Rennes (1975)

  • Issue: 1, page 36-49

How to cite

top

Pellaumail, J.. "Étude des oscillations d'un processus de sauts purs à l'aide d'un processus de diffusion." Publications mathématiques et informatique de Rennes (1975): 36-49. <http://eudml.org/doc/273736>.

@article{Pellaumail1975,
author = {Pellaumail, J.},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {1},
pages = {36-49},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Étude des oscillations d'un processus de sauts purs à l'aide d'un processus de diffusion},
url = {http://eudml.org/doc/273736},
year = {1975},
}

TY - JOUR
AU - Pellaumail, J.
TI - Étude des oscillations d'un processus de sauts purs à l'aide d'un processus de diffusion
JO - Publications mathématiques et informatique de Rennes
PY - 1975
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 36
EP - 49
LA - fre
UR - http://eudml.org/doc/273736
ER -

References

top
  1. [1] M.F. AllainConvergence de processus de Markov de sauts purs vers un processus de diffusion. Séminaire de Rennes1975 
  2. [2] P. BillingsleyConvergence of probability measures. John Wiley and Sons, 1968 Zbl0944.60003MR233396
  3. [3] K.L. ChungA course in probability theory. Academic Press1974 Zbl0345.60003MR1796326
  4. [4] W.H. Flemming and Chan Hsing SuOne dimensionnal migration models in population genetics theory. Preprint. Brown University Providence, Rhode Island 02912 
  5. [5] D.P. GaverDiffusion approximations and models for certain congestion problems. J. Appl. Prob.5, 607-623 (1968) Zbl0194.20801MR238410
  6. [6] D.P. Gaver and G.S. ShedlerProcessor utilization in multiprogramming systems via Diffusion Approximations 
  7. [7] E. GelembeOn approximate computer system models. Journal of the Association for computing machinery. 22,2, 261-269, 1975 Zbl0322.68035MR381028
  8. [8] D.P. KennedyLimiting diffusions for the conditionned M/G/1 Queue. J. Appl. Prob.11, 355-362, 1974 Zbl0279.60089MR365760
  9. [9] H. KobayashiApplications of the diffusion approximation to queuing networks. Computer Sciences Mathematics, 1972 Zbl0285.60080
  10. [10] T.G. KurtzSolutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob.7, 49-58 Zbl0191.47301MR254917
  11. [11] T.G. KurtzLimit theorem for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob.8, 344-356, 1971 Zbl0219.60060MR287609
  12. [12] T.G. KurtzSemigroups of conditionned shifts and approximation of Markov processes (to appear) Zbl0318.60026MR383544
  13. [13] H.J. KushnerOn the weak convergence of interpolated Markov chains to a diffusion. Ann. Prob.2, 40-50, 1974 Zbl0285.60064MR362428
  14. [14] G.F. NewellApplications of queuing theory. Chapman and Hall, London, 1971, chap. 6 Zbl0503.60094MR348857
  15. [15] P. PriouretProcessus de diffusion et équations différentielles stochastiques. Ecole d'Eté de Probabilités de Saint FlourIII, 1973. Springer Verlag Zbl0363.60064
  16. [16] D.W. Strook and S.R.S. VaradhanDiffusion processes with continuous coefficients. Comm. Pure. Appl. Math22, 479-530, 1967 Zbl0167.43904
  17. [17] Yamada and WatanabeOn the uniqueness of solutions of stochastic differential equations. J. of Math. Kyoto University, vol 11, N° 1-3 Zbl0236.60037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.