Numerical Analysis of the Semi-Linear Heat Equation of Blow-up Type

Tomoyasu Nakagawa; Teruo Ushijima

Publications mathématiques et informatique de Rennes (1976)

  • Issue: S5, page 1-24

How to cite

top

Nakagawa, Tomoyasu, and Ushijima, Teruo. "Numerical Analysis of the Semi-Linear Heat Equation of Blow-up Type." Publications mathématiques et informatique de Rennes (1976): 1-24. <http://eudml.org/doc/273785>.

@article{Nakagawa1976,
author = {Nakagawa, Tomoyasu, Ushijima, Teruo},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S5},
pages = {1-24},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Numerical Analysis of the Semi-Linear Heat Equation of Blow-up Type},
url = {http://eudml.org/doc/273785},
year = {1976},
}

TY - JOUR
AU - Nakagawa, Tomoyasu
AU - Ushijima, Teruo
TI - Numerical Analysis of the Semi-Linear Heat Equation of Blow-up Type
JO - Publications mathématiques et informatique de Rennes
PY - 1976
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S5
SP - 1
EP - 24
LA - eng
UR - http://eudml.org/doc/273785
ER -

References

top
  1. [1] Ciarlet, P. G. and P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Computer methods in applied mechanics and engineering, 2, 17-31 (1973). Zbl0251.65069MR375802
  2. [2] Fujii, H., Some remarks on finite element analysis of time-dependent field problems, Theory and practice in finite element structural analysis, (Tokyo Univ. Press, Tokyo, 1973). Zbl0373.65047
  3. [3] Fujita, H., On the blowing up of solutions to the Cauchy problem for u t = Δ u + u 1 + α , J. Fac. Sci. Univ.Tokyo, 13, 109-124 (1966). Zbl0163.34002MR214914
  4. [4] Fujita, H., On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Symposium in Pure Math., AMS, 18, 105-113. (1970). Zbl0228.35048MR269995
  5. [5] Ito, S., On the blowing up of solutions for semi-linear parabolic equations (in Japanese), Sugaku, 18, 44-47 (1966). MR219902
  6. [6] Kaplan, S., On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math., 16, 305-330 (1963). Zbl0156.33503MR160044
  7. [7] Nakagawa, T., Blowing up of a finite difference solution to u t = u χ χ + u 2 , 1974-annual report of the trial research in large scale computation supported by Japanese Ministry of Education, 47-58 (1975). Zbl0357.65075MR423823
  8. [8] Nakagawa, T. and T. Ushijima, On numerical analysis of the semi-linear heat equation of blow-up type, Symposium on evolution systems and free boundary problems held at RIMS, Kyoto Univ. in Nov. 1975. 
  9. [9] Tsutsumi, M., Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS, Kyoto Univ., 8, 211-229 (1972). Zbl0248.35074MR312079
  10. [10] Tsutsumi, M., Existence and nonexistence of global solutions of the first boundary value problem for a certain quasilinear parabolic equation, Funkcialaj Ekvacioj, 17, 13-24 (1974). Zbl0308.35063MR344679
  11. [11] Ushijima, T., On the finite element approximation of semi-linear parabolic equations (pre-print). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.