Ergodic Theory for Inner Functions of the Upper Half Plane
Publications mathématiques et informatique de Rennes (1977)
- Issue: 3, page 1-26
Access Full Article
topHow to cite
topAaronson, Jon. "Ergodic Theory for Inner Functions of the Upper Half Plane." Publications mathématiques et informatique de Rennes (1977): 1-26. <http://eudml.org/doc/273794>.
@article{Aaronson1977,
author = {Aaronson, Jon},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {3},
pages = {1-26},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Ergodic Theory for Inner Functions of the Upper Half Plane},
url = {http://eudml.org/doc/273794},
year = {1977},
}
TY - JOUR
AU - Aaronson, Jon
TI - Ergodic Theory for Inner Functions of the Upper Half Plane
JO - Publications mathématiques et informatique de Rennes
PY - 1977
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 3
SP - 1
EP - 26
LA - eng
UR - http://eudml.org/doc/273794
ER -
References
top- [1] J. Aaronson : Rational Ergodicity - Israel Journal of Mathematics272 p.93-123 (1977). Zbl0376.28011MR584018
- [2] R. Adler and B. Weiss : The ergodic, infinite measure preserving transformation of Boole - Israel Journal of Mathematics163 p.263-278 (1973). Zbl0298.28012MR335751
- [3] S. Foguel : The ergodic theory of Markov processes - New York, Van-Nostrand Reinhold (1969). Zbl0282.60037MR261686
- [4] S. Foguel and M. Lin : Some ratio limit theorems for Markov operators. Z. Wahrscheinlichkeitstheorie231 p.55-66. Zbl0223.60027MR310974
- [5] J.H.B. Kemperman : The ergodic behaviour of a class of real transformations. Stochastic Processes and related topics. Proceedings of the summer research institute on statistical inference for stochastic processes (Editor Puri) Indiana University p.249-258Academic Press (1975). Zbl0347.28015MR372156
- [6] G. Letac : Which functions preserve Cauchy laws, to appear in P.A.M.S. Zbl0376.28019MR584393
- [7] T. Li and F. Schweiger : The generalised Boole transformation is ergodic - preprint. Zbl0389.28009
- [8] M. Lin : Mixing for Markov operators - Z. Wahrscheinlichkeits-theorie193 p.231-243 (1971 ). Zbl0212.49301MR309207
- [9] W. Rudin : Real and Complex analysis - Mc Graw Hill (1966). Zbl0925.00005MR210528
- [10] F. Schweiger : Zahlentheoretische transformationen mit σ-endlichen mass. S-Ber. Öst. Akad. Wiss. Math. - naturw. K.l. Abt.II185 p.95-103 (1976). Zbl0348.28016MR447162
- [11] F. Schweiger : tan x is ergodic - to appear in P.A.M.S. Zbl0361.28011MR473144
- [12] K. Yosida : Functional analysis - Springer, Berlin (1968).
- [13] A. Denjoy : Fonctions contractent le cercle Z 1 ; C.R.Acad. Sci.Paris182 (1926) pp 255-257 JFM52.0309.04
- [14] M. Heins : On the pseudo periods of the weierstrass Zeta function : Nagaoya Math. Journal30 (1967) pp113-119 Zbl0177.34903MR262492
- [15] J.H. Neuwirth : Ergodicity of some mapping of the circle and the line : Preprint Zbl0411.30022MR516157
- [16] F. Schweiger and M. Thaler : Ergodische Eigenschaften einer Klass reellen Transformationen : preprint. MR254007
- [17] M. Tsuji : Potential theory in modern function theory : Maruzen, Tokyo (1959). Zbl0087.28401MR114894
- [18] J. Wolff : Sur l'iteraction des fonctions holomorphes dans une region : CR.Acad.Sci.Paris, 182 (1926) p. 42-43 Zbl52.0309.02JFM52.0309.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.