Ergodic Theory for Inner Functions of the Upper Half Plane

Jon Aaronson

Publications mathématiques et informatique de Rennes (1977)

  • Issue: 3, page 1-26

How to cite

top

Aaronson, Jon. "Ergodic Theory for Inner Functions of the Upper Half Plane." Publications mathématiques et informatique de Rennes (1977): 1-26. <http://eudml.org/doc/273794>.

@article{Aaronson1977,
author = {Aaronson, Jon},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {3},
pages = {1-26},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Ergodic Theory for Inner Functions of the Upper Half Plane},
url = {http://eudml.org/doc/273794},
year = {1977},
}

TY - JOUR
AU - Aaronson, Jon
TI - Ergodic Theory for Inner Functions of the Upper Half Plane
JO - Publications mathématiques et informatique de Rennes
PY - 1977
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 3
SP - 1
EP - 26
LA - eng
UR - http://eudml.org/doc/273794
ER -

References

top
  1. [1] J. Aaronson : Rational Ergodicity - Israel Journal of Mathematics272 p.93-123 (1977). Zbl0376.28011MR584018
  2. [2] R. Adler and B. Weiss : The ergodic, infinite measure preserving transformation of Boole - Israel Journal of Mathematics163 p.263-278 (1973). Zbl0298.28012MR335751
  3. [3] S. Foguel : The ergodic theory of Markov processes - New York, Van-Nostrand Reinhold (1969). Zbl0282.60037MR261686
  4. [4] S. Foguel and M. Lin : Some ratio limit theorems for Markov operators. Z. Wahrscheinlichkeitstheorie231 p.55-66. Zbl0223.60027MR310974
  5. [5] J.H.B. Kemperman : The ergodic behaviour of a class of real transformations. Stochastic Processes and related topics. Proceedings of the summer research institute on statistical inference for stochastic processes (Editor Puri) Indiana University p.249-258Academic Press (1975). Zbl0347.28015MR372156
  6. [6] G. Letac : Which functions preserve Cauchy laws, to appear in P.A.M.S. Zbl0376.28019MR584393
  7. [7] T. Li and F. Schweiger : The generalised Boole transformation is ergodic - preprint. Zbl0389.28009
  8. [8] M. Lin : Mixing for Markov operators - Z. Wahrscheinlichkeits-theorie193 p.231-243 (1971 ). Zbl0212.49301MR309207
  9. [9] W. Rudin : Real and Complex analysis - Mc Graw Hill (1966). Zbl0925.00005MR210528
  10. [10] F. Schweiger : Zahlentheoretische transformationen mit σ-endlichen mass. S-Ber. Öst. Akad. Wiss. Math. - naturw. K.l. Abt.II185 p.95-103 (1976). Zbl0348.28016MR447162
  11. [11] F. Schweiger : tan x is ergodic - to appear in P.A.M.S. Zbl0361.28011MR473144
  12. [12] K. Yosida : Functional analysis - Springer, Berlin (1968). 
  13. [13] A. Denjoy : Fonctions contractent le cercle Z 1 ; C.R.Acad. Sci.Paris182 (1926) pp 255-257 JFM52.0309.04
  14. [14] M. Heins : On the pseudo periods of the weierstrass Zeta function : Nagaoya Math. Journal30 (1967) pp113-119 Zbl0177.34903MR262492
  15. [15] J.H. Neuwirth : Ergodicity of some mapping of the circle and the line : Preprint Zbl0411.30022MR516157
  16. [16] F. Schweiger and M. Thaler : Ergodische Eigenschaften einer Klass reellen Transformationen : preprint. MR254007
  17. [17] M. Tsuji : Potential theory in modern function theory : Maruzen, Tokyo (1959). Zbl0087.28401MR114894
  18. [18] J. Wolff : Sur l'iteraction des fonctions holomorphes dans une region : CR.Acad.Sci.Paris, 182 (1926) p. 42-43 Zbl52.0309.02JFM52.0309.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.