Interpolation Error Estimates for the Reduced Hsieh-Clough-Tocher Triangle

Philippe G. Ciarlet

Publications mathématiques et informatique de Rennes (1977)

  • Issue: S4, page 1-16

How to cite

top

Ciarlet, Philippe G.. "Interpolation Error Estimates for the Reduced Hsieh-Clough-Tocher Triangle." Publications mathématiques et informatique de Rennes (1977): 1-16. <http://eudml.org/doc/273804>.

@article{Ciarlet1977,
author = {Ciarlet, Philippe G.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-16},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Interpolation Error Estimates for the Reduced Hsieh-Clough-Tocher Triangle},
url = {http://eudml.org/doc/273804},
year = {1977},
}

TY - JOUR
AU - Ciarlet, Philippe G.
TI - Interpolation Error Estimates for the Reduced Hsieh-Clough-Tocher Triangle
JO - Publications mathématiques et informatique de Rennes
PY - 1977
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 16
LA - eng
UR - http://eudml.org/doc/273804
ER -

References

top
  1. [1] Bramble, J.H. ; Zlamal, M. : Triangular elements in the finite element method, Math. Comput.24 (1970), 809-820. Zbl0226.65073MR282540
  2. [2] Ciarlet, P.G. : Sur l'élément de Clough et Tocher, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2 (1974), 19-27. Zbl0306.65070MR381349
  3. [3] Ciarlet, P.G. : Numerical Analysis of the Finite Element Method, Presses de l'Université de Montréal, Montréal, 1976. Zbl0363.65083MR495010
  4. [4] Ciarlet, P.G. : The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, to appear. Zbl0383.65058MR520174
  5. [5] Ciarlet, P.G. ; Raviart, P.-A. : General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational Mech. Anal.46 (1972), 177-199. Zbl0243.41004MR336957
  6. [6] Clough, R.W. ; Tocher, J.L. : Finite element stiffness matrices for analysis of plates in bending, in Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965. 
  7. [7] Necas, J. : Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967. Zbl1225.35003
  8. [8] Percell, P. : On cubic and quartic Clough-Tocher finite elements, SIAM J. Numer. Anal.13 (1976), 100-103. Zbl0319.65064MR408198
  9. [9] Raviart, P.-A. : Méthode des Eléments Finis, Lecture Notes (D.E.A. Analyse Numérique), Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI ), 1972. 
  10. [10] Zenísek, A. : Interpolation polynomials on the triangle, Numer. Math.15 (1970), 283-296. Zbl0216.38901MR275014
  11. [11] Zenísek, A. : A general theorem on triangular finite C(m)-elements, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.R-2 (1974), 119-127. Zbl0321.41003MR388731
  12. [12] Zienkiewicz, O.C. : The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971. Zbl0237.73071MR315970
  13. [13] Zlámal, M. : On the finite element method, Numer. Math.12 (1968), 394-409. Zbl0176.16001MR243753

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.