Approximation semi-classique de l'équation de Heisenberg

Xue Ping Wang

Publications mathématiques et informatique de Rennes (1985)

  • Volume: 3, Issue: 3, page 241-260

How to cite

top

Wang, Xue Ping. "Approximation semi-classique de l'équation de Heisenberg." Publications mathématiques et informatique de Rennes 3.3 (1985): 241-260. <http://eudml.org/doc/273892>.

@article{Wang1985,
author = {Wang, Xue Ping},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {semiclassical approximation; Heisenberg's equation; quantum mechanics; pseudo-differential operators},
language = {fre},
number = {3},
pages = {241-260},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Approximation semi-classique de l'équation de Heisenberg},
url = {http://eudml.org/doc/273892},
volume = {3},
year = {1985},
}

TY - JOUR
AU - Wang, Xue Ping
TI - Approximation semi-classique de l'équation de Heisenberg
JO - Publications mathématiques et informatique de Rennes
PY - 1985
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 3
IS - 3
SP - 241
EP - 260
LA - fre
KW - semiclassical approximation; Heisenberg's equation; quantum mechanics; pseudo-differential operators
UR - http://eudml.org/doc/273892
ER -

References

top
  1. [1] : S. Albeverio- T. Arède: "The relation between quantum mechanics and classical mechanics". A savery of some mathematical aspects, to appear in Proc. Como. Conf., 1983, "Quantum Chaos", Ed. G. Casati, Plenum. 
  2. [2] : J. Chazarain: "Spectre d'un hamiltonien quantique et mécanique classique". Comm. P.D.E., 5(6) (1980) 595-644. Zbl0437.70014MR578047
  3. [3] : Yu. V. Egorov: "On canonical transformation of pseudo-differential operators". Usp. Mat. Nauk., 25(1969), 235-236. Zbl0191.43802
  4. [4] : D. Fujiwara: "A construction of the fundamental solution for the Schrödinger equations". J. d'Anal. Math.35 (1979), 41-96. Zbl0418.35032MR555300
  5. [5] : G.A. Hagedorn: "Semi-classical quantum mechanics, I, the h 0 limit for coherent states". Comm. Math. Phys.71 (1980), 77-93. MR556903
  6. [6] : B. Helffer- D. Robert: "Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles". J. Funct. Anal., 53 (3) (1983) 246-268. Zbl0524.35103MR724029
  7. [7] : K. Hepp: "The classical limits for quantum mechanical correlation functions". Comm. Math., Phys., 35(1974) 265-277. MR332046
  8. [8] : H. Hogreve- J. Potthoff- R. Schrader: "Classical limits for quantum particles in Yang-Mills potentials". Comm. Math., Phys., 91(4) (1983) 573-598. Zbl0547.58044MR727204
  9. [9] : L. Hormander: "The Weyl calculus of pseudo-differential operators". Comm. Pure Appl. Math., 32 (1979) 359-443. Zbl0388.47032MR517939
  10. [10] : H. Kitada- H. Kumano-Go: "A family of Fourier integral operators and the fundjamental solution for a Schrödinger equations". Osaka, J. Math., 18 (1981) 291-360. Zbl0472.35034MR628838
  11. [11] : V.P. Maslov- M.V. Fedoriuk: "Semi-classical approximation in quantum mechanics". D. Reidel, Dordrecht, 1981. Zbl0458.58001
  12. [12] : D. Robert: "Autour de l'approximation semi-classique". Notas de Cusso, n° 21, Recife, 1983. Zbl0621.35001
  13. [13] : D. Robert- H. Tamura: "Semi-classical bounds for resolvents of Schrödinger operators and asymptotic for scattering phase". Comm. P.D.E., 9 (10) (1984) 1017-1058. Zbl0561.35021
  14. [14] : R. Schrader- M. Taylor: "Small symptotics for quantum partition functions associated to particles in external Yang-Mills potentials".Comm. Math., Phys., 92 (1984), 555-594. Zbl0534.58028MR736411
  15. [15] : B. Simon: "The classical limit of quantum partition functions". Comm. Math. Phys., 71 (1980), 247-276. Zbl0436.22012MR565281
  16. [16] : M. Sirgue- A. Sirgue-Collin- A. Truman: "Semi-classical approximation and microcanonical ensemble". Ann. Inst. H. Poincaré, 41 (4) (1984), 429-444. Zbl0592.58048MR777915
  17. [17] : X.P. Wang: "Comportement semi-classique de traces partielles". C.R. Acad. Sc.Paris, 299 (17) (1984), 867-870. Zbl0573.47046MR777750
  18. [18] : X.P. Wang: "Asymptotic behaviour of spectral means for pseudofifferential operators". A paraître J. Approx. Theory Appl. (1985). Zbl0595.47036
  19. [19] : X.P. Wang: "Etude semi-classique d'observables quantiques". A paraître. Zbl0597.35028
  20. [20] : X.P. Wang: "Time-delay operators in semi-classical limit". Exposé Séminaire d'Analyse Fonctionnelle, Univ. Rennes, (1985). Zbl0714.35064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.