La Queste del Saint G R a (AL): a Computational Approach to Local Algebra

Teo Mora

Publications mathématiques et informatique de Rennes (1989)

  • Issue: 4, page 173-201

How to cite

top

Mora, Teo. "La Queste del Saint $GR_a$(AL): a Computational Approach to Local Algebra." Publications mathématiques et informatique de Rennes (1989): 173-201. <http://eudml.org/doc/273940>.

@article{Mora1989,
author = {Mora, Teo},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {4},
pages = {173-201},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {La Queste del Saint $GR_a$(AL): a Computational Approach to Local Algebra},
url = {http://eudml.org/doc/273940},
year = {1989},
}

TY - JOUR
AU - Mora, Teo
TI - La Queste del Saint $GR_a$(AL): a Computational Approach to Local Algebra
JO - Publications mathématiques et informatique de Rennes
PY - 1989
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 4
SP - 173
EP - 201
LA - eng
UR - http://eudml.org/doc/273940
ER -

References

top
  1. [ALR] M.E. Alonso, I. Luengo, M. Raimondo, An Algorithm on Quasi-Ordinary Polynomials, Proc. AAECC6, L.N.Comp.Sci., 356 (1989) Zbl0692.13011MR1008493
  2. [A-M] M. Artin, B. Mazur, On periodic points, Ann. Math.81 (1965), 82-99 Zbl0127.13401MR176482
  3. [AMR1] M.E. Alonso, T. Mora, M. Raimondo, Computing with algebraic series, Proc. ISSAC89 (1989) 
  4. [AMR2] M.E. Alonso, T. Mora, M. Raimondo, A computational model for algebraic power series, submited to J. Pure Appl. Alg. Zbl0749.13017
  5. [B-S] D. Bayer, Communication at COCOAII (1989) 
  6. [CAR] G. Carrà. 
  7. [FKS ] A. Furukawa, H. Kobayashi, T. Sasaki, Gröbner bases of ideals of convergent power series (1985) 
  8. [G-T] A. Galligo, C. Traverso 
  9. [GTZ] P. Gianni, B. Trager, G. Zacharias, 
  10. [G-Z] M. Grieco, B. Zucchetti, Communication at AAECC7 (1989) 
  11. [GRÖ] W. Gröbner 
  12. [K-W] Kredel, Weispfenning 
  13. [LOG] A. Logar 
  14. [L-P] I. Luengo, G. Pfister, Normal forms and moduli spaces of curve singularities with semigroup l t ; 2 p , 2 q 2 p q + d g t ; , Preprint Univ. Compl.Madrid (1988) Zbl0725.14021MR1078865
  15. [M-M] H.M. Möller, F. Mora, New constructive methods in classical ideal theory, J. Alg.100 (1986) Zbl0621.13007MR839576
  16. [MOR1] F. Mora, An algorithm to compute the equations of tangent cones, Proc. EUROCAM 82LectN.Comp.Sci, 144 (1982), 158-165 Zbl0568.68029MR680065
  17. [MOR2] F. Mora, A constructive characterization of standard bases, Boll. Unione Matematica Italiana, Sez. D, 2 (1983), 41-50. Zbl0619.13010MR771529
  18. [MOR3] F. Mora, An algorithmic approach to local rings, Proc. EUROCAL 85, Lect N. Comp. Sci., 204 (1985), 518-525. Zbl0582.13002MR826584
  19. [MPT] T. Mora, G. Pfister, C. TraversoAn introduction to the tangent cone algorithm, submitted to C.Hoffman Ed. Issues in non-linear geometry and robotics, JAI Press 
  20. [P-S] G. Pfister, H. Schönemann, Singularities with exact Poincaré complex but not quasihomogeneous, Preprint 147, Humboldt Univ.Dept. Math. (1988) Zbl0708.14018MR1031692
  21. [PON] Ponkratjev, to appear in Proc. Eurocal87, L.N.C.S. 
  22. [ROB1] L. Robbiano, Coni tangenti a singolarità razionali, Atti Conv. Geom. Alg.Firenze (1981) 
  23. [ROB2] L. Robbiano, On the theory of graded structures, J. Symb. Comp.2 (1986) 139-170 Zbl0609.13007MR849048
  24. [SPA] W. Spangher, On the computation of the Hilbert-Samuel series and multiplicity, Proc. AAECC6L. N. Comp. sci., 357 (1989), 407-414 Zbl0677.13006MR1008516
  25. [Z-S] O. Zariski, P. Samuel, Commutative Algebra, Van Nostrand (1958) Zbl0081.26501MR90581

NotesEmbed ?

top

You must be logged in to post comments.