Free Energy of Gravitating Fermions
Recherche Coopérative sur Programme n°25 (1972)
- Volume: 14, page 1-26
Access Full Article
topHow to cite
topThirring, Walter. "Free Energy of Gravitating Fermions." Recherche Coopérative sur Programme n°25 14 (1972): 1-26. <http://eudml.org/doc/274096>.
@article{Thirring1972,
author = {Thirring, Walter},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {1-26},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Free Energy of Gravitating Fermions},
url = {http://eudml.org/doc/274096},
volume = {14},
year = {1972},
}
TY - JOUR
AU - Thirring, Walter
TI - Free Energy of Gravitating Fermions
JO - Recherche Coopérative sur Programme n°25
PY - 1972
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 14
SP - 1
EP - 26
LA - eng
UR - http://eudml.org/doc/274096
ER -
References
top- 1) F.J. Dyson in Statistical Physics, Phase transitions and Superfluidity, 1966Brandeis University Suramer School in Theoretical Physics, lecture notes ;
- F.J. Dyson and A. Lenard, J.Math.Phys.8 (1967) 423 Zbl0948.81665MR2408896
- 2) J.L. Lebowitz and E. H. Lieb, Phys. Rev. Letter22. (1969) 631
- 3) J.-M. Lévy-Leblond, J.Math.Phys.10 (1969) 806.
- 4) W. Thirring, Z. Phys.235 (1970) 339;
- P. Hertel and W. Thirring, Annals of Physics63 (1971). Zbl0227.47034
- 5) P. Hertel and W. Thirring, CEEN preprint TH. 1338 (1971). MR1552579
- 6) A typical “neutron star” of particles at a temperature of 5 MeV and enclosed into a sphere of 100 km radius corresponds to with , , and . Since , and are of order unity (if measured in their natural units) and since is sufficiently large, we will describe the above “neutron star” by the limit . For , and km we would have reached the same accuracy for .
- 7) T. Kato, Perturbation theory for linear operators, Berlin, Springer1966. There the infinite volume case is studied, however, the result also holds for finite volume. Zbl0836.47009
- 8) H.D. Maison, Analyticity of the partition function for finite quantum Systems, CERN preprint TH. 1299 (1971). Zbl0218.47017MR303887
- 9) J. Dieudonné, Eléments d'analyse, Tome I, Paris, Gauthier-Villars1969. Zbl0326.22001
- 10) B. Simon, J.Math.Phys.10 (1969) 1123. Again this estimate for infinité volume is a fortiori also valid for finite volume. MR246593
- 11) D. Ruelle, Statistical mechanics - rigorous results, New York, Benjamin1961. Zbl0177.57301MR289084
- 12) N.N. Bogoliubov jr., Physica32 (1966) 933. MR207351
- 13) J. Ginibre, Commun.Math.Phys.8 (1968) 26. Zbl0155.32701MR225552
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.