Highest Weights of Semisimple Lie Algebras

W. Laskar

Recherche Coopérative sur Programme n°25 (1977)

  • Volume: 24, page 209-248

How to cite


Laskar, W.. "Highest Weights of Semisimple Lie Algebras." Recherche Coopérative sur Programme n°25 24 (1977): 209-248. <http://eudml.org/doc/274132>.

author = {Laskar, W.},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {209-248},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Highest Weights of Semisimple Lie Algebras},
url = {http://eudml.org/doc/274132},
volume = {24},
year = {1977},

AU - Laskar, W.
TI - Highest Weights of Semisimple Lie Algebras
JO - Recherche Coopérative sur Programme n°25
PY - 1977
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 24
SP - 209
EP - 248
LA - eng
UR - http://eudml.org/doc/274132
ER -


  1. [1]- H. Wcyl. The classical groups (PrincetonUniv. Press1946). 
  2. [2] S. Lie and F. Engel. Theorie der Transformations gruppen (Leipzig1893). JFM08.0212.01
  3. [3] L.S. Pontrjagin. Topological groups (PrincetonUniv. Press1939). Zbl65.0872.02JFM65.0872.02
  4. [4] J. Patera and D. Sankoff. Tables of branching rules (Presses de l'Université de Montreal1973). MR450467
  5. [5] H. Zasscnhaus. Lecture Notes of the Summer School (Université de Montreal juin 1976) on Lie Groups, Lie algebras and Representation Theory. The theory of groups. (Chelsea1958). 
  6. [6] E. Cartan. These, Paris 1894. 2nd ed.(Vuibert, Paris1933), 
  7. [7] C. Chevalley. Théorie des groupes de Lie (Hermann, Paris1968). Zbl0186.33104
  8. [8] H. Bacry. Leçons sur la théorie des groupes (Gordon & Breach1968). 
  9. [9] E.B. Dynkin. Am. Math. Soc. translations n° 17 (1950) MR35761
  10. E.B. DynkinAm. Math. Soc. translations serie 2, 6 (1957), p.111-244. 
  11. [10] H. Freudenthal & de Vries. Linear Lie Groups (Academic Press1969). Zbl0377.22001MR260926
  12. [11] N. Jacobson. Lie algebras (John Wiley, Interscience, 1962). Zbl0121.27504MR143793
  13. [12] J.E. Humphreys. Introduction to Lie algebras, etc. (Springer, G.T.M.1972). Zbl0254.17004MR323842
  14. [13] P.A. Rowlatt. Group Theory and elementary particles.(Longmans1966). Zbl0156.23602
  15. [14] I. Satake. Classification theory of semi-simple algebraic groups .(M. Dekker, New-York1971). Zbl0226.20037MR316588
  16. [15] J.P. Serre, Algebres de Lie semisimples complexes (Benjamin ; 1966). Zbl0144.02105MR215886
  17. [16] H. Bacry, Ph. Combe and P. Sorba. Rept. Math. Phys.5, 2, 145 (1974) Zbl0293.22034
  18. [17,a] J. Patera, R. Sharp, P. Wintemitz and H. Zassenhaus. Subgroups of the Poincaré group and their invariants (J.M.P.17, 6, 1976). Zbl0347.20029MR407200
  19. [18,a] M. Hamermesh. Group theory and its application to physical problems. (Addison-Wesley1962). Zbl0100.36704MR136667
  20. [18,b] N. Bourbaki. Groupes et algèbres de Lie. Chap. 8, p. 214.( Hermann1975). Zbl0483.22001
  21. [19] M. Perroud. On the irreducible representations of the Lie algebra chain G 2 A 2 (J.M.P.17, 11, 1976). Zbl0346.17007MR426659
  22. [20] W. Laskar. Highest weight of smi-simple Lie algebras (5ième Colloque sur la théorie des groupes ; Montréal 5-9 Juillet 1976). Zbl0358.17013

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.