Théorie spectrale

H. Buchwalter; D. Tarral

Publications du Département de mathématiques (Lyon) (1982)

  • Volume: 8/C, Issue: 8C, page 1-198
  • ISSN: 0076-1656

How to cite

top

Buchwalter, H., and Tarral, D.. "Théorie spectrale." Publications du Département de mathématiques (Lyon) 8/C.8C (1982): 1-198. <http://eudml.org/doc/274174>.

@article{Buchwalter1982,
author = {Buchwalter, H., Tarral, D.},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {spectral measures; continuous functional calculus; spectral and quasi- spectral measures; unbounded operators; extension theory; classical moment problem of Hamburger; quantum mechanics},
language = {fre},
number = {8C},
pages = {1-198},
publisher = {Université Claude Bernard - Lyon 1},
title = {Théorie spectrale},
url = {http://eudml.org/doc/274174},
volume = {8/C},
year = {1982},
}

TY - JOUR
AU - Buchwalter, H.
AU - Tarral, D.
TI - Théorie spectrale
JO - Publications du Département de mathématiques (Lyon)
PY - 1982
PB - Université Claude Bernard - Lyon 1
VL - 8/C
IS - 8C
SP - 1
EP - 198
LA - fre
KW - spectral measures; continuous functional calculus; spectral and quasi- spectral measures; unbounded operators; extension theory; classical moment problem of Hamburger; quantum mechanics
UR - http://eudml.org/doc/274174
ER -

References

top
  1. [1] N. Bourbaki, Théories spectrales, chap. 1 et 2, Hermann, Paris, (1967). Zbl0152.32603
  2. [2] L. H. Loomis, An introduction to Abstract Harmonic Analysis, Van Nostrand, New-York, (1953). Zbl0052.11701MR54173
  3. [3] N. Dunford et J. T. Schwartz, Linear operatorsI et II, Interscience Publishers, New-York, (1957). Zbl0084.10402
  4. [4] M. Reed et B. Simon, Methods of modern mathematical physics, I, (Functional Analysis), II (Fourier Analysis, self-adjointness), Academic Press, (1975). Zbl0242.46001MR751959
  5. [5] F. Riesz et B. S. Nagy, Leçons d'Analyse Fonctionnelle, Gauthier-Villars, Paris, (1953). Zbl0064.35404
  6. [6] M. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, (1932). Zbl0005.40003MR1451877
  7. [7] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edimbourg, (1965). Zbl0135.33803
  8. [8] J.A. Shohat et J.D. Tamarkin, The problem of moments, Amer. Math. Soc, Math., Surv., 1, (1943). Zbl0112.06902MR8438
  9. [9] G.W. Mackey, The mathematical Foundations of Quantum Mechanics, Benjamin Inc., New-York, (1963). Zbl0114.44002
  10. [10] E.G. Beltrametti et G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia of Math. and its Appl., Addison-Wesley, (1981). Zbl0504.03026MR635780
  11. [11] C. Cohen-Tannoudji, B. Diu et F. Laloe, Mécanique quantique I, Hermann, Paris, (1973). 
  12. [12] A. Böhm, Quantum Mechanics, Springer Verlag, Berlin, (1979). Zbl0994.81500MR580320
  13. [13] A. E. Nussbaum, Quasi-analytic vectors, Arkiv für Math., 6-10, (1965), 179-191. Zbl0182.46102MR194899
  14. [14] D. Masson et W.K. Mc Clary, Classes of C Vectors and Essential Self-Adjointness, J. Funct. Analysis, 10, (1972), 19-32. Zbl0234.47026MR372673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.