Théorie spectrale
Publications du Département de mathématiques (Lyon) (1982)
- Volume: 8/C, Issue: 8C, page 1-198
- ISSN: 0076-1656
Access Full Article
topHow to cite
topBuchwalter, H., and Tarral, D.. "Théorie spectrale." Publications du Département de mathématiques (Lyon) 8/C.8C (1982): 1-198. <http://eudml.org/doc/274174>.
@article{Buchwalter1982,
author = {Buchwalter, H., Tarral, D.},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {spectral measures; continuous functional calculus; spectral and quasi- spectral measures; unbounded operators; extension theory; classical moment problem of Hamburger; quantum mechanics},
language = {fre},
number = {8C},
pages = {1-198},
publisher = {Université Claude Bernard - Lyon 1},
title = {Théorie spectrale},
url = {http://eudml.org/doc/274174},
volume = {8/C},
year = {1982},
}
TY - JOUR
AU - Buchwalter, H.
AU - Tarral, D.
TI - Théorie spectrale
JO - Publications du Département de mathématiques (Lyon)
PY - 1982
PB - Université Claude Bernard - Lyon 1
VL - 8/C
IS - 8C
SP - 1
EP - 198
LA - fre
KW - spectral measures; continuous functional calculus; spectral and quasi- spectral measures; unbounded operators; extension theory; classical moment problem of Hamburger; quantum mechanics
UR - http://eudml.org/doc/274174
ER -
References
top- [1] N. Bourbaki, Théories spectrales, chap. 1 et 2, Hermann, Paris, (1967). Zbl0152.32603
- [2] L. H. Loomis, An introduction to Abstract Harmonic Analysis, Van Nostrand, New-York, (1953). Zbl0052.11701MR54173
- [3] N. Dunford et J. T. Schwartz, Linear operatorsI et II, Interscience Publishers, New-York, (1957). Zbl0084.10402
- [4] M. Reed et B. Simon, Methods of modern mathematical physics, I, (Functional Analysis), II (Fourier Analysis, self-adjointness), Academic Press, (1975). Zbl0242.46001MR751959
- [5] F. Riesz et B. S. Nagy, Leçons d'Analyse Fonctionnelle, Gauthier-Villars, Paris, (1953). Zbl0064.35404
- [6] M. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, (1932). Zbl0005.40003MR1451877
- [7] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edimbourg, (1965). Zbl0135.33803
- [8] J.A. Shohat et J.D. Tamarkin, The problem of moments, Amer. Math. Soc, Math., Surv., 1, (1943). Zbl0112.06902MR8438
- [9] G.W. Mackey, The mathematical Foundations of Quantum Mechanics, Benjamin Inc., New-York, (1963). Zbl0114.44002
- [10] E.G. Beltrametti et G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia of Math. and its Appl., Addison-Wesley, (1981). Zbl0504.03026MR635780
- [11] C. Cohen-Tannoudji, B. Diu et F. Laloe, Mécanique quantique I, Hermann, Paris, (1973).
- [12] A. Böhm, Quantum Mechanics, Springer Verlag, Berlin, (1979). Zbl0994.81500MR580320
- [13] A. E. Nussbaum, Quasi-analytic vectors, Arkiv für Math., 6-10, (1965), 179-191. Zbl0182.46102MR194899
- [14] D. Masson et W.K. Mc Clary, Classes of Vectors and Essential Self-Adjointness, J. Funct. Analysis, 10, (1972), 19-32. Zbl0234.47026MR372673
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.