A Theorem on Directed Quasi-Ordered Sets and Some Remarks
Publications du Département de mathématiques (Lyon) (1985)
- Volume: 2/B, Issue: 2B, page 15-20
- ISSN: 0076-1656
Access Full Article
topHow to cite
topReferences
top- [1] J.R. Isbell, The category of cofinal types. II, Trans. Amer. Math. soc. Vol. 116, (1965) p. 394-416. Zbl0212.32701MR201316
- [2] J. Mayer, Kalkschmidt, E. Steiner, Some theorems in set theory and application in the ideal theory of partially ordered sets, Duke Math. J.31 (1964) ; 287-289. Zbl0151.01302MR160729
- [3] E.C. Milner, Recent results on the cofinality of ordered sets Orders : Description and Roles (ed. M. Pouzet, D. Richard) Annals of Discrete Math. Vol. 23 (1984), North-Holland, Amsterdam. p. 1-8. Zbl0571.06002MR779842
- [4] E.C. Milner and M. Pouzet, On the cofinality of a partially ordered set, in I. Rival, ed, Ordered sets (1982) 279-298. Reidel, Dordrecht. Zbl0489.06001MR661297
- [5] M. Pouzet, Parties cofinales des ordres partiels ne contenant pas d'antichaines infinies, 1980, J. London Math. Soc., to appear.
- [6] J. Schmidt, Konfinalität, Z. Math. Logik1 (1955), 271-303. Zbl0067.02903MR76836
- [7] Wang Shang-Zhi, Li Bo Yu, On the minimal cofinal subsets of a directed quasi-ordered set, Discrete Mathematics, 48 (1984), 289-306. Zbl0537.06002MR737272