1 Déformations des structures de Poisson et formulation isospectrale des problèmes d'évolution non linéaires

René Ouzilou

Publications du Département de mathématiques (Lyon) (1984)

  • Volume: 3/B, Issue: 3B, page 1-13
  • ISSN: 0076-1656

How to cite

top

Ouzilou, René. "1 Déformations des structures de Poisson et formulation isospectrale des problèmes d'évolution non linéaires." Publications du Département de mathématiques (Lyon) 3/B.3B (1984): 1-13. <http://eudml.org/doc/274252>.

@article{Ouzilou1984,
author = {Ouzilou, René},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {Korteweg-de Vries equation; Poisson structures; deformations; Lax equations},
language = {fre},
number = {3B},
pages = {1-13},
publisher = {Université Claude Bernard - Lyon 1},
title = {1 Déformations des structures de Poisson et formulation isospectrale des problèmes d'évolution non linéaires},
url = {http://eudml.org/doc/274252},
volume = {3/B},
year = {1984},
}

TY - JOUR
AU - Ouzilou, René
TI - 1 Déformations des structures de Poisson et formulation isospectrale des problèmes d'évolution non linéaires
JO - Publications du Département de mathématiques (Lyon)
PY - 1984
PB - Université Claude Bernard - Lyon 1
VL - 3/B
IS - 3B
SP - 1
EP - 13
LA - fre
KW - Korteweg-de Vries equation; Poisson structures; deformations; Lax equations
UR - http://eudml.org/doc/274252
ER -

References

top
  1. [1] A. Lichnerowicz, (1977), Les variétés de Poisson et leurs algèbres de Lie associées (Jour. Diff. Geometry, vol. 12 n°12) Zbl0405.53024MR501133
  2. [2] J. Braconnier (1977), Sur les crochets généralisés et quelques unes de leurs applications (Pub. Dep. Math. Lyon, T. 14 n° 4) Zbl0397.17004MR520992
  3. [3] R. Ouzilou (1983), Hamiltonian actions on Poisson manifolds (Research Notes in mathematics80 - Pitman). Zbl0514.58010MR712169
  4. [4] A. Lichnerowicz (1975), Algèbres de Lie attachées à une cariété canonique (Jour. Math. Pures Appl. T. 54 n° 6). Zbl0318.53041
  5. [5] (a) M. Adler (1979), On a trace fonctional for formal pseudo-differential operators and the symplectic structure of K.d.V. equation (Inv. Math.50) Zbl0393.35058
  6. (b) Lebedev-Manin, (1979), The Gelfand-Dikii hamiltonian operators and the co-adjoint representation of Volterra groups. Zbl0455.58012
  7. (c) G. Wilson, (1979), Commuting flows and conservation law for Lax equations (Math. Proc. London Society). Zbl0427.35024MR530817
  8. [6] J. Helmstetter, (1982), Algèbres de Clifford et algèbres de Weyl, (Cahiers Math.Montpellier n° 25). Zbl0598.15023MR690062
  9. [7] Berezin-Perelomov, (1980), Group theoretical interpretation of the Kortewegde Vries type equations (Com. Math. Phys.74). Zbl0429.35062MR576268
  10. [8] Rieman & Semenov-Tian-Sanskii, (1980), Current algebras and non linear partial differential equations (Soviet Math. Dokl. Vol. 21 n° 2). Zbl0501.58018
  11. [9] R. Hermann, (1974), Geometric theory of non-linear differential equations (Vol. XIV, Math. Sciences Press). MR682775
  12. [10] A. Weinstein, (1982), The local structure of Poisson manifolds (Center of Pures and Applied Math. Berkeley). Zbl0524.58011MR723816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.