Suites de décomposition d'un espace de Banach à base inconditionnelle. Noyaux d'opérateurs définis sur certains espaces d'opérateurs

Bruno Decoret

Publications du Département de mathématiques (Lyon) (1978)

  • Volume: 15, Issue: 3, page 1-29
  • ISSN: 0076-1656

How to cite

top

Decoret, Bruno. "Suites de décomposition d'un espace de Banach à base inconditionnelle. Noyaux d'opérateurs définis sur certains espaces d'opérateurs." Publications du Département de mathématiques (Lyon) 15.3 (1978): 1-29. <http://eudml.org/doc/274256>.

@article{Decoret1978,
author = {Decoret, Bruno},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {decomposition sequence; unconditional basis; super reflexivity; compact operator; Calkin algebra; kernel},
language = {fre},
number = {3},
pages = {1-29},
publisher = {Université Claude Bernard - Lyon 1},
title = {Suites de décomposition d'un espace de Banach à base inconditionnelle. Noyaux d'opérateurs définis sur certains espaces d'opérateurs},
url = {http://eudml.org/doc/274256},
volume = {15},
year = {1978},
}

TY - JOUR
AU - Decoret, Bruno
TI - Suites de décomposition d'un espace de Banach à base inconditionnelle. Noyaux d'opérateurs définis sur certains espaces d'opérateurs
JO - Publications du Département de mathématiques (Lyon)
PY - 1978
PB - Université Claude Bernard - Lyon 1
VL - 15
IS - 3
SP - 1
EP - 29
LA - fre
KW - decomposition sequence; unconditional basis; super reflexivity; compact operator; Calkin algebra; kernel
UR - http://eudml.org/doc/274256
ER -

References

top
  1. [1] J. Diestel, Geometry of Banach spaces. Lectures Notes. Springer Verlag. Zbl0307.46009
  2. [2] P. Enflo, Banach spaces which can be given an equivalent uniform convexe norm. Israël Journ.13 (1972) p. 281.288. Zbl0259.46012MR336297
  3. [3] H. Fakhoury, Etude du noyau d'un opérateur défini sur l'espace des suites bornées et applications. Bull. sc. math.2° série 100 (1976) p. 44-45. Zbl0361.46014MR433196
  4. [4] W.B. Johnson, On finite dimensional subspaces of Banach spaces with local inconditional structures. Studia Mathematica L.I. (1974). Zbl1012.46012MR358306
  5. [5] R.C. James, Bases and Reflexivity on Banach spaces. Pac J. Math.41 (1972). p. 409-419. Zbl0218.46011
  6. [6] M.A. Krasnoleskii and Y. Rutickii : Convex fonctions and Orlicz spaces. Groningen. Netherlands (1961). 
  7. [7] J. Lidenstrauss, On complemented subspaces of m. Israël J. of Math.5 (1967) p. 153-156. Zbl0153.44202MR222616
  8. [8] J. Lidenstrauss and L. Tzafriri, On orlicz sequence spaces I, Israël ; J. Of Math.10 (1971), p. 379-390 Zbl0227.46042MR313780
  9. J. Lidenstrauss and L. Tzafriri, On orlicz sequence spaces II, Israël ; J. Of Math.. 11 (1972) p. 355-379. Zbl0237.46034MR310592
  10. J. Lidenstrauss and L. Tzafriri, On orlicz sequence spaces III, Israël ; J. Of Math.. 14 (1973) p. 368-389. Zbl0262.46031MR322476
  11. [9] J. Lidenstrauss and L. Tzafriri : Classical Banach spaces. Lectures notes en math.Springer Verlag. Zbl0259.46011
  12. [10] J. Marti, Introduction to theory of bases. Springer tracts, VoL. 18 (1969). Zbl0191.41301MR438075
  13. [11] R.C. James and J. Schaffer, Super-reflexivity and the girth or spheres. Israël Journal of math, 11 (1972). Zbl0236.46017MR305045
  14. [12] H.R. Pitt, A note on bilinear forms. J. Lond. Math. Soc.11 (1936) P. 171-174. Zbl0014.31201MR1574344
  15. [13] H.P. Rosenthal, On quasi complemented subspaces of Banach spaces. Journal of Functional analysis, 4 (1969) p. 176-214. Zbl0185.20303MR250036
  16. [14] H.P. Rosenthal, On totaly incomparable Banach spaces. Journal of Functional analysis, 4 (1969) p. 167-175. Zbl0184.15004MR248506
  17. [15] I. Singer, Bases in Banach spacesSpringer Verlag1970. Zbl0467.46020MR298399

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.