Application de la théorie des déformations de Kodaira et Spencer à la mesure de Polyakov

Georges Sarafopoulos

Publications du Département de mathématiques (Lyon) (1993)

  • Issue: 4, page 1-66
  • ISSN: 0076-1656

How to cite

top

Sarafopoulos, Georges. "Application de la théorie des déformations de Kodaira et Spencer à la mesure de Polyakov." Publications du Département de mathématiques (Lyon) (1993): 1-66. <http://eudml.org/doc/274303>.

@article{Sarafopoulos1993,
author = {Sarafopoulos, Georges},
journal = {Publications du Département de mathématiques (Lyon)},
language = {fre},
number = {4},
pages = {1-66},
publisher = {Université Claude Bernard - Lyon 1},
title = {Application de la théorie des déformations de Kodaira et Spencer à la mesure de Polyakov},
url = {http://eudml.org/doc/274303},
year = {1993},
}

TY - JOUR
AU - Sarafopoulos, Georges
TI - Application de la théorie des déformations de Kodaira et Spencer à la mesure de Polyakov
JO - Publications du Département de mathématiques (Lyon)
PY - 1993
PB - Université Claude Bernard - Lyon 1
IS - 4
SP - 1
EP - 66
LA - fre
UR - http://eudml.org/doc/274303
ER -

References

top
  1. [1] Abraham, R-Marsden, J.Foundations of mechanics. New-York. Benjamin1978. Zbl0158.42901MR515141
  2. [2] Ahlfors L.Some remarks on Teichmüller's space of Riemann surfaces. Annals of Maths. Vol.74 N°1 (1961). Zbl0146.30602MR204641
  3. [3] Atiyah M.The geometry and Physics of KnotsCambridge University Press1990. Zbl0729.57002MR1078014
  4. [4] Belavin - Knizhnik. Complex geometry and the theory of Quantum Strings. Sov.Phys. J.E.T.P.64 (2) August1986. MR888370
  5. [5] Berger, M-Ebin, D.Somme decompositions of the space of symetric tensors on a Riemann manifold. J. Diff. Geametry, 3, 379-392 (1969). Zbl0194.53103MR266084
  6. [6] Bismut J.M. - Bost J.B.Fibrés déterminants, métriques de Quillen et dégénerescence des courbes. C.R. Acad.Sci. t 307, Série I p.317-320 (1988). Zbl0652.32019MR958789
  7. [7] Bismut J.M. - Gillet H. - Soule G. Soule G.Analytic Torsion and Holomorphic Déterminant Bundles. I. Bott-Chem Forms and Analytic Torsion Commun. Math.Phys.115, p.49-78 (1988) Zbl0651.32017MR929146
  8. Bismut J.M. - Gillet H. - Soule G.Analytic Torsion and Holomorphic Déterminant BundlesII. Direct Images and Bott-Chem Forms Commun. Math. Phys.115, p.79-126 (1988). Zbl0651.32017MR929147
  9. Bismut J.M. - Gillet H. - Soule G.Analytic Torsion and Holomorphic Déterminant BundlesIII. Analytic Torsion and Holomorphic Determinant Bundles. Commun.Math.Phys.115, 301-351 (1988). Zbl0651.32017MR931666
  10. [8] Bost J.B.Fibrés déterminants, déterminants régularisés et mesures sur les espaces de modules des courbes complexes. Sém.Bourbaki n°676 - Février 1987. Zbl0655.32021
  11. [9] Bost J.B. - Jolic_urA holomorphic property and the critical dimension in string theory from an index theorem. Phys.Lett.B174 (1986) p.273-276. MR848539
  12. [10] D'Hoker - PhongMultiloop amplitudes for the bosonic Polyakov string. Nucl. Phys.B.269 (1986) p.205-234. MR838673
  13. [11] Fischer A.E. - Tromba A.J. : On a Purely Riemannian Proof of the structure and dimension of the Unramified Moduli Space of a Compact Riemann SurfaceMath. An.267, 311-345 (1984). Zbl0518.32015MR738256
  14. [12] Fischer A.E. - Tromba A.J.Almost complex principal fiber bundles and the complex structure on Teichmüller Space. Crelles J. Band.352, 151-160 (1984). Zbl0573.32021MR758699
  15. [13] Fischer A.E. - Tromba A.J.On the Weil-Pelersson metric on Teichmüller Space. Trans. A.M.S.284, 319-335 (1984). Zbl0578.58006MR742427
  16. [14] Freed D.Determinants, Torsion and Strings. Commun. Math.Phys.107, 483-533 (1986). Zbl0606.58013MR866202
  17. [15] Gilkey P.B.Invariance theory, the heat equation and the Atiyah-Singer index theorem. Puplish or Perish, 1984. Zbl0565.58035MR783634
  18. [16] Kobayashi, S-Nomizu, KFoundations of differential geometry. New-York : Intersciences1963. Zbl0175.48504MR152974
  19. [17] Kodaira K - Spencer D. G.On deformations of complex structures I, II, III. An of Math. Vol.67, (1958). Zbl0128.16901MR112154
  20. Kodaira K - Spencer D. G.On deformations of complex structures I, II, III. An of Math. Vol.71 (1960) Zbl0128.16902MR115189
  21. [18] Kodaira K - Nirenberg L. - Spencer D.G.On the existence of deformations of complex analytic structures. An. of Math. Vol.68 (1958). Zbl0088.38004MR112157
  22. [19] Lang S.An introduction to Arakelov theorySpringer-Verlag1988. Zbl0667.14001MR969124
  23. [20] Lehto O.Univalent Functions and Teichmüller Spaces G.T.M.Springer-Verlag1987. Zbl0606.30001MR867407
  24. [21] Mumford D.Stability of projective varieties. L'Enseignement Mathématique23 (1977). Zbl0363.14003MR450273
  25. [22] Mumford D - Knudsen F.The projectivity of the moduli space of stable curves. I. - Preliminaries on "det" and "div"Math. Scand.39 (1976). Zbl0343.14008MR437541
  26. [23] Nag S.The complex analytic theory of Teichmüller spaces. Canadian Math. Society Series of monographies and advanced texts. John-Wiley1988. Zbl0667.30040MR927291
  27. [24] Newlander, A. - Nirenberg, L.Complex analytic coodinates in almost-complex manifolds. Annals of Maths.65 (1957). Zbl0079.16102MR88770
  28. [25] Omori, H.On the group of diffeomorphism on a compact manifold. Proc.Sym.Pure Math.AMS15 (1970). Zbl0214.48805MR271983
  29. [26] Palais, R.Foundations of global non-linear analysis. New-York. Benjamin1968. Zbl0164.11102MR248880
  30. [27] Polyakov A.M.Quantum geometry of bosonic stringsPhys. lett.103B207-210 (1981). MR623209
  31. [28] Powell, J.Two theorems on the mapping class group of a surface. Proc. AMS68 (1978). Zbl0391.57009MR494115
  32. [29] Quillen D.Determinant of Cauchy-Riemann operators over a Riemann surface. Funct. Anal.Appl.19 (1985). Zbl0603.32016MR783704
  33. [30] Ray D. - Singer I.M.R-torsion and the laplacian on riemann manifoldsAdv. in Math.7, 145-210 (1971). Zbl0239.58014MR295381
  34. [31] Seeley R.T.Complex powers of an elliptic operator. Proc. Symp.Pure Math. AMS Vol.X (1967). Zbl0159.15504MR237943
  35. [32] Singer I.M.Some Problems in the Quantization of Gauge theories and String theories. Proce.Symp.Pure Math. Vol.48 (1988). Zbl0702.58010MR974336
  36. [33] Takhtajan L.A.Uniformization, local Index theorem and geometry of the moduli Spaces of Riemann surfaces and vector Bundles. Proc.Symp.Pure Math. Vol.49 (1989) Part.I. Zbl0689.30035MR1013154
  37. [34] Tomi F - Tromba A.J.Existence theorems for minimal surfaces of non-zero genus spanning a contour. Memoirs A.M.S. Vol.71 N°382 (1988). Zbl0638.58004MR920962
  38. [35] WellsDifferential Analysis on Complex manifolds. Prendice-Hall Series in modem analysis1973. Zbl0435.32004MR515872

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.