Unbiased risk estimation method for covariance estimation
Hélène Lescornel; Jean-Michel Loubes; Claudie Chabriac
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 251-264
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R.J. Adler, An introduction to continuity, extrema, and related topics for general gaussian processes. Lect. Note Ser. Institute of Mathematical Statistics (1990). Zbl0747.60039MR1088478
- [2] P.J. Bickel and E. Levina, Covariance regularization by thresholding. Ann. Statist.36 (2008) 2577–2604. Zbl1196.62062MR2485008
- [3] J. Bigot, R. Biscay, J.-M. Loubes and L.M. Alvarez, Group lasso estimation of high-dimensional covariance matrices. J. Machine Learn. Res. (2011). Zbl1280.68156MR2877598
- [4] J. Bigot, R. Biscay, J.-M. Loubes and L. Muñiz-Alvarez, Nonparametric estimation of covariance functions by model selection. Electron. J. Statis.4 (2010) 822–855. Zbl1329.62365MR2684389
- [5] J. Bigot, R. Biscay Lirio, J.-M. Loubes and L. Muniz Alvarez, Adaptive estimation of spectral densities via wavelet thresholding and information projection (2010).
- [6] R. Biscay, L.M. Rodrguez and E. Daz-Frances, Cross-validation of covariance structures using the frobenius matrix distance as a discrepancy function. J. Stat. Comput. Simul.58 (1997) 195–215. Zbl0880.62063
- [7] T. Cai and M. Yuan, Nonparametric covariance function estimation for functional and longitudinal data. Technical report (2010).
- [8] N.A.C. Cressie, Statistics for spatial data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Revised reprint of the 1991 edition, A Wiley-Interscience Publication. John Wiley and Sons Inc., New York (1993). Zbl0799.62002MR1239641
- [9] P.J. Diggle and A.P. Verbyla, Nonparametric estimation of covariance structure in longitudinal data. Biometrics54 (1998) 401–415. Zbl1058.62600
- [10] A.G. Journel, Kriging in terms of projections. J. Int. Assoc. Math. Geol.9 (1977) 563–586. MR456314
- [11] C.R. Rao, Linear statistical inference and its applications. Wiley ser. Probab. Stastis. Wiley, 2nd edn. (1973). Zbl0256.62002MR346957
- [12] G.A.F. Seber, A matrix handbook for statisticians. Wiley ser. Probab. Stastis. Wiley (2008). Zbl1143.15001MR2365265
- [13] G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. Wiley (1986). Zbl1170.62365MR838963
- [14] C.M. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Statis.9 (1981) 1135–1151. Zbl0476.62035MR630098
- [15] M.L. Stein. Interpolation of spatial data. Some theory for Kriging. Springer Ser. Statis. Springer-Verlag, New York (1999). Zbl0924.62100MR1697409
- [16] A.B. Tsybakov, Introduction à l’estimation non-paramétrique. Vol. 41 of Math. Appl. Springer (2004). Zbl1029.62034MR2013911