Uniform Confidence Bands for Local Polynomial Quantile Estimators

Camille Sabbah

ESAIM: Probability and Statistics (2014)

  • Volume: 18, page 265-276
  • ISSN: 1292-8100

Abstract

top
This paper deals with uniform consistency and uniform confidence bands for the quantile function and its derivatives. We describe a kernel local polynomial estimator of quantile function and give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1 (1973) 1071–1095].

How to cite

top

Sabbah, Camille. "Uniform Confidence Bands for Local Polynomial Quantile Estimators." ESAIM: Probability and Statistics 18 (2014): 265-276. <http://eudml.org/doc/274373>.

@article{Sabbah2014,
abstract = {This paper deals with uniform consistency and uniform confidence bands for the quantile function and its derivatives. We describe a kernel local polynomial estimator of quantile function and give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1 (1973) 1071–1095].},
author = {Sabbah, Camille},
journal = {ESAIM: Probability and Statistics},
keywords = {uniform confidence bands; conditional quantile estimation},
language = {eng},
pages = {265-276},
publisher = {EDP-Sciences},
title = {Uniform Confidence Bands for Local Polynomial Quantile Estimators},
url = {http://eudml.org/doc/274373},
volume = {18},
year = {2014},
}

TY - JOUR
AU - Sabbah, Camille
TI - Uniform Confidence Bands for Local Polynomial Quantile Estimators
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 265
EP - 276
AB - This paper deals with uniform consistency and uniform confidence bands for the quantile function and its derivatives. We describe a kernel local polynomial estimator of quantile function and give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1 (1973) 1071–1095].
LA - eng
KW - uniform confidence bands; conditional quantile estimation
UR - http://eudml.org/doc/274373
ER -

References

top
  1. [1] R.R. Bahadur, A note on quantiles in large samples. Ann. Math. Stat.37 (1966) 577–580. Zbl0147.18805MR189095
  2. [2] P.J. Bickel and M. Rosenblatt, On some global measures of the deviation of density function estimates. Ann. Statist.1 (1973) 1071–1095. Zbl0275.62033MR348906
  3. [3] G. Claeskens and I. Van Keilegom, Bootstrap confidence bands for regression curves and their derivatives. Ann. Statist.31 (2003) 1852–1884. Zbl1042.62044MR2036392
  4. [4] U. Einmahl and D.M. Mason, Uniform in bandwidth consistency of kernel–type function estimators. Ann. Statist.3 (2005) 1380–1403. Zbl1079.62040MR2195639
  5. [5] R.L. Eubanck and P.L. Speckman, Confidence bands in nonparametric regression. J. Amer. Stat. Associat.88 (1993) 1287–1301. Zbl0792.62030MR1245362
  6. [6] J. Fan and I. Gijbels, Local Polynomial Modeling And Its Applications. Monogr. Stat. Appl. Prob. Chapman and Hall 66 (1996). Zbl0873.62037MR1383587
  7. [7] E. Guerre and C. Sabbah, Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econom. Theory.28 (2012) 87–129. Zbl1234.62027MR2899215
  8. [8] W. Härdle, Asymptotic maximal deviation of M–smoothers. J. Mult. Anal.29 (1989) 163–179. Zbl0667.62028
  9. [9] W. Härdle, Y. Ritov and S. Song, Partial linear quantile regression and bootstrap confidence bands. J. Mult. Ana.107 (2012) 244–262. Zbl1236.62035
  10. [10] W. Härdle and S. Song, The Stochastic fluctuation of the quantile regression curve. Econom. Theory26 (2010) 1180–1200. Zbl1294.62145
  11. [11] P.J. Huber, Robust estimation of a location parameter. Ann. Math. Stat.37 (1964) 73–101. Zbl0136.39805MR161415
  12. [12] P.J. Huber, Robust Statistics. Wiley Series in Probab. Math. Statist. John Wiley and Sons, Inc., New York (1981). Zbl1276.62022MR606374
  13. [13] G. Knafl, J. Sacks and D. Ylvisaker, Confidence bands for regression functions. J. Amer. Stat. Associat.80 (1985) 683–691. Zbl0577.62043MR803261
  14. [14] R. Koenker, Quantile Regression. New York, Cambridge University Press (2005). Zbl1111.62037
  15. [15] R. Koenker and G. Basset, Regression quantiles. Econometrica46 (1978) 33–50. Zbl0373.62038MR474644
  16. [16] E. Kong, O. Linton and Y. Xia, Uniform Bahadur representation for local polynomial estimates of M–regression and its application to the additive model. Econom. Theory.26 (2010) 159–166. Zbl1198.62030MR2684794
  17. [17] D.H.-Y. Leung, Cross–validation in nonparametric regression with outliers. Ann. Statist.33 (2005) 2291–2310. Zbl1086.62055MR2211087
  18. [18] Q. Li and J.S. Racine, Nonparametric estimation of conditional CDF and quantile function with mixed categorical and continuous data. J. Busin. Econ. Statist.26 (2008) 423–434. MR2459343
  19. [19] R. Maronna, D. Martin and V. Yohai, Robust statistics, theory and methods. Wiley (2006). Zbl1094.62040MR2238141
  20. [20] J.L. Powell, Censored regression quantiles. J. Econom.32 (1986) 143–155. Zbl0605.62139MR853049
  21. [21] M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat.23 (1952) 470-472. Zbl0047.13104MR49525
  22. [22] C.J. Stone, Optimal global rates of convergence for nonparametric regression. Ann. Statist.10 (1982) 1040–1053. Zbl0511.62048MR673642
  23. [23] J. Sun and C.R. Loader, Simultaneous confidence bands for linear regression and smoothing. Ann. Statist.22 (1994) 1328–1345. Zbl0817.62057MR1311978
  24. [24] G. Tusnàdy, A remark on the approximation of the sample distribution function in the multidimensional case. Period. Math. Hungar.8 (1977) 53-55. Zbl0386.60006MR443045
  25. [25] J. Wang and L. Yang, Polynomial spline confidence bands for regression curves. Statistica Sinica.19 (2009) 325–342. Zbl1225.62055MR2487893
  26. [26] K. Yu and M.C. Jones, Local Linear Quantile Regression. J. Amer. Stat. Associat.93 (1998) 228–237. Zbl0906.62038MR1614628

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.