Uniform Confidence Bands for Local Polynomial Quantile Estimators
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 265-276
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topSabbah, Camille. "Uniform Confidence Bands for Local Polynomial Quantile Estimators." ESAIM: Probability and Statistics 18 (2014): 265-276. <http://eudml.org/doc/274373>.
@article{Sabbah2014,
abstract = {This paper deals with uniform consistency and uniform confidence bands for the quantile function and its derivatives. We describe a kernel local polynomial estimator of quantile function and give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1 (1973) 1071–1095].},
author = {Sabbah, Camille},
journal = {ESAIM: Probability and Statistics},
keywords = {uniform confidence bands; conditional quantile estimation},
language = {eng},
pages = {265-276},
publisher = {EDP-Sciences},
title = {Uniform Confidence Bands for Local Polynomial Quantile Estimators},
url = {http://eudml.org/doc/274373},
volume = {18},
year = {2014},
}
TY - JOUR
AU - Sabbah, Camille
TI - Uniform Confidence Bands for Local Polynomial Quantile Estimators
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 265
EP - 276
AB - This paper deals with uniform consistency and uniform confidence bands for the quantile function and its derivatives. We describe a kernel local polynomial estimator of quantile function and give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1 (1973) 1071–1095].
LA - eng
KW - uniform confidence bands; conditional quantile estimation
UR - http://eudml.org/doc/274373
ER -
References
top- [1] R.R. Bahadur, A note on quantiles in large samples. Ann. Math. Stat.37 (1966) 577–580. Zbl0147.18805MR189095
- [2] P.J. Bickel and M. Rosenblatt, On some global measures of the deviation of density function estimates. Ann. Statist.1 (1973) 1071–1095. Zbl0275.62033MR348906
- [3] G. Claeskens and I. Van Keilegom, Bootstrap confidence bands for regression curves and their derivatives. Ann. Statist.31 (2003) 1852–1884. Zbl1042.62044MR2036392
- [4] U. Einmahl and D.M. Mason, Uniform in bandwidth consistency of kernel–type function estimators. Ann. Statist.3 (2005) 1380–1403. Zbl1079.62040MR2195639
- [5] R.L. Eubanck and P.L. Speckman, Confidence bands in nonparametric regression. J. Amer. Stat. Associat.88 (1993) 1287–1301. Zbl0792.62030MR1245362
- [6] J. Fan and I. Gijbels, Local Polynomial Modeling And Its Applications. Monogr. Stat. Appl. Prob. Chapman and Hall 66 (1996). Zbl0873.62037MR1383587
- [7] E. Guerre and C. Sabbah, Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econom. Theory.28 (2012) 87–129. Zbl1234.62027MR2899215
- [8] W. Härdle, Asymptotic maximal deviation of M–smoothers. J. Mult. Anal.29 (1989) 163–179. Zbl0667.62028
- [9] W. Härdle, Y. Ritov and S. Song, Partial linear quantile regression and bootstrap confidence bands. J. Mult. Ana.107 (2012) 244–262. Zbl1236.62035
- [10] W. Härdle and S. Song, The Stochastic fluctuation of the quantile regression curve. Econom. Theory26 (2010) 1180–1200. Zbl1294.62145
- [11] P.J. Huber, Robust estimation of a location parameter. Ann. Math. Stat.37 (1964) 73–101. Zbl0136.39805MR161415
- [12] P.J. Huber, Robust Statistics. Wiley Series in Probab. Math. Statist. John Wiley and Sons, Inc., New York (1981). Zbl1276.62022MR606374
- [13] G. Knafl, J. Sacks and D. Ylvisaker, Confidence bands for regression functions. J. Amer. Stat. Associat.80 (1985) 683–691. Zbl0577.62043MR803261
- [14] R. Koenker, Quantile Regression. New York, Cambridge University Press (2005). Zbl1111.62037
- [15] R. Koenker and G. Basset, Regression quantiles. Econometrica46 (1978) 33–50. Zbl0373.62038MR474644
- [16] E. Kong, O. Linton and Y. Xia, Uniform Bahadur representation for local polynomial estimates of M–regression and its application to the additive model. Econom. Theory.26 (2010) 159–166. Zbl1198.62030MR2684794
- [17] D.H.-Y. Leung, Cross–validation in nonparametric regression with outliers. Ann. Statist.33 (2005) 2291–2310. Zbl1086.62055MR2211087
- [18] Q. Li and J.S. Racine, Nonparametric estimation of conditional CDF and quantile function with mixed categorical and continuous data. J. Busin. Econ. Statist.26 (2008) 423–434. MR2459343
- [19] R. Maronna, D. Martin and V. Yohai, Robust statistics, theory and methods. Wiley (2006). Zbl1094.62040MR2238141
- [20] J.L. Powell, Censored regression quantiles. J. Econom.32 (1986) 143–155. Zbl0605.62139MR853049
- [21] M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat.23 (1952) 470-472. Zbl0047.13104MR49525
- [22] C.J. Stone, Optimal global rates of convergence for nonparametric regression. Ann. Statist.10 (1982) 1040–1053. Zbl0511.62048MR673642
- [23] J. Sun and C.R. Loader, Simultaneous confidence bands for linear regression and smoothing. Ann. Statist.22 (1994) 1328–1345. Zbl0817.62057MR1311978
- [24] G. Tusnàdy, A remark on the approximation of the sample distribution function in the multidimensional case. Period. Math. Hungar.8 (1977) 53-55. Zbl0386.60006MR443045
- [25] J. Wang and L. Yang, Polynomial spline confidence bands for regression curves. Statistica Sinica.19 (2009) 325–342. Zbl1225.62055MR2487893
- [26] K. Yu and M.C. Jones, Local Linear Quantile Regression. J. Amer. Stat. Associat.93 (1998) 228–237. Zbl0906.62038MR1614628
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.