Adaptive estimation of a density function using beta kernels

Karine Bertin; Nicolas Klutchnikoff

ESAIM: Probability and Statistics (2014)

  • Volume: 18, page 400-417
  • ISSN: 1292-8100

Abstract

top
In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.

How to cite

top

Bertin, Karine, and Klutchnikoff, Nicolas. "Adaptive estimation of a density function using beta kernels." ESAIM: Probability and Statistics 18 (2014): 400-417. <http://eudml.org/doc/274389>.

@article{Bertin2014,
abstract = {In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.},
author = {Bertin, Karine, Klutchnikoff, Nicolas},
journal = {ESAIM: Probability and Statistics},
keywords = {beta kernels; adaptive estimation; minimax rates; Hölder spaces},
language = {eng},
pages = {400-417},
publisher = {EDP-Sciences},
title = {Adaptive estimation of a density function using beta kernels},
url = {http://eudml.org/doc/274389},
volume = {18},
year = {2014},
}

TY - JOUR
AU - Bertin, Karine
AU - Klutchnikoff, Nicolas
TI - Adaptive estimation of a density function using beta kernels
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 400
EP - 417
AB - In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.
LA - eng
KW - beta kernels; adaptive estimation; minimax rates; Hölder spaces
UR - http://eudml.org/doc/274389
ER -

References

top
  1. [1] B. Abdous and C.C. Kokonendji, Consistency and asymptotic normality for discrete associated-kernel estimator. Afr. Diaspora J. Math.8 (2009) 63–70. Zbl1239.62032MR2511101
  2. [2] K. Bertin and N. Klutchnikoff, Minimax properties of beta kernel estimators. J. Statist. Plan. Inference141 (2011) 2287–2297. Zbl1214.62038MR2775207
  3. [3] T. Bouezmarni and S. Van Bellegem, Nonparametric beta kernel estimator for long memory time series. Technical report (2009). 
  4. [4] T. Bouezmarni and J.V.K. Rombouts, Nonparametric density estimation for multivariate bounded data. J. Statist. Plann. Inference140 (2010) 139–152. Zbl1178.62026MR2568128
  5. [5] S.X. Chen, Beta kernel estimators for density functions. Comput. Statist. Data Anal.31 (1999) 131–145. Zbl0935.62042MR1718494
  6. [6] S.X. Chen, Beta kernel smoothers for regression curves. Statist. Sinica10 (2000) 73–91. Zbl0970.62018MR1742101
  7. [7] D.B.H. Cline and J.D. Hart, Kernel estimation of densities with discontinuities or discontinuous derivatives. Statistics22 (1991) 69–84. Zbl0729.62031MR1097362
  8. [8] I. Dattner and B. Reiser, Estimation of distribution functions in measurement error models. Technical report (2010). Zbl06118916
  9. [9] L. Devroye and G. Lugosi, Combinatorial methods in density estimation. Springer Series in Statistics. Springer-Verlag, New York (2001). Zbl0964.62025MR1843146
  10. [10] E. Giné and R. Latała and J. Zinn, Exponential and moment inequalities for U-statistics. High dimensional probability, vol. II (Seattle, WA, 1999), Birkhäuser Boston, Boston, MA. Progr. Probab. 47 (2000) 13–38. Zbl0969.60024MR2387756
  11. [11] J. Gustafsson, M. Hagmann, J.P. Nielsen and O. Scaillet, Local transformation kernel density estimation of loss distributions. J. Bus. Econ. Statist.27 (2009) 161–175. MR2516437
  12. [12] P. Hall, Large sample optimality of least squares cross-validation in density estimation. Ann. Statist.11 (1983) 1156–1174. Zbl0599.62051MR720261
  13. [13] I.A. Ibragimov and R.Z. Khas’minskiĭ, More on estimation of the density of a distribution. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 108 194, 198 (1981) 72–88. Zbl0486.62039MR629401
  14. [14] M.C. Jones, Simple boundary correction for kernel density estimation. Statist. Comput.3 (1993) 135–146. Zbl0859.62037
  15. [15] C.C. Kokonendji and T.S. Kiessé, Discrete associated kernels method and extensions. Statist. Methodol.8 (2011) 497–516. Zbl1248.62052MR2834036
  16. [16] M. Lejeune and P. Sarda, Smooth estimators of distribution and density functions. Comput. Statist. Data Anal.14 (1992) 457–471. Zbl0937.62581MR1192215
  17. [17] O.V. Lepski, Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Teor. Veroyatnost. i Primenen. 36 (1991) 645–659. Zbl0738.62045MR1147167
  18. [18] C. McDiarmid, On the method of bounded differences, in Surveys in combinatorics (Norwich 1989), vol. 141 of London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (1989) 148–188. Zbl0712.05012MR1036755
  19. [19] H.-G. Müller, Smooth optimum kernel estimators near endpoints. Biometrika78 (1991) 521–530. Zbl1192.62108MR1130920
  20. [20] O. Renault and O. Scaillet, On the way to recovery: A nonparametric bias free estimation of recovery rate densities. J. Banking and Finance28 (2004) 2915–2931. 
  21. [21] E.F. Schuster, Incorporating support constraints into nonparametric estimators of densities. Commun. Statist. − Theory Methods 14 (1985) 1123–1136. Zbl0585.62070MR797636
  22. [22] B.W. Silverman, Density estimation for statistics and data analysis. Monogr. Statist. Appl. Probability. Chapman & Hall, London (1986). Zbl0617.62042MR848134
  23. [23] Ch.J. Stone, An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist.12 (1984) 1285–1297. Zbl0599.62052MR760688
  24. [24] Sh. Zhang and R.J. Karunamuni, On kernel density estimation near endpoints. J. Statist. Plann. Inference70 (1998) 301–316. Zbl0938.62037MR1649872
  25. [25] H. Victor de la Peña and S.J. Montgomery-Smith, Decoupling inequalities for the tail probabilities of multivariate U-statistics. Ann. Probab.23 (1995) 806–816. Zbl0827.60014MR1334173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.