Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory

Elena Di Bernardino; Thomas Laloë; Véronique Maume-Deschamps; Clémentine Prieur

ESAIM: Probability and Statistics (2013)

  • Volume: 17, page 236-256
  • ISSN: 1292-8100

Abstract

top
This paper deals with the problem of estimating the level sets L(c) =  {F(x) ≥ c}, with c ∈ (0,1), of an unknown distribution function F on ℝ+2. A plug-in approach is followed. That is, given a consistent estimator Fn of F, we estimate L(c) by Ln(c) =  {Fn(x) ≥ c}. In our setting, non-compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by applications in multivariate risk theory. In particular we propose a new bivariate version of the conditional tail expectation by conditioning the two-dimensional random vector to be in the level set L(c). We also present simulated and real examples which illustrate our theoretical results.

How to cite

top

Di Bernardino, Elena, et al. "Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory." ESAIM: Probability and Statistics 17 (2013): 236-256. <http://eudml.org/doc/274392>.

@article{DiBernardino2013,
abstract = {This paper deals with the problem of estimating the level sets L(c) =  \{F(x) ≥ c\}, with c ∈ (0,1), of an unknown distribution function F on ℝ+2. A plug-in approach is followed. That is, given a consistent estimator Fn of F, we estimate L(c) by Ln(c) =  \{Fn(x) ≥ c\}. In our setting, non-compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by applications in multivariate risk theory. In particular we propose a new bivariate version of the conditional tail expectation by conditioning the two-dimensional random vector to be in the level set L(c). We also present simulated and real examples which illustrate our theoretical results.},
author = {Di Bernardino, Elena, Laloë, Thomas, Maume-Deschamps, Véronique, Prieur, Clémentine},
journal = {ESAIM: Probability and Statistics},
keywords = {level sets; distribution function; plug-in estimation; Hausdorff distance; conditional tail expectation},
language = {eng},
pages = {236-256},
publisher = {EDP-Sciences},
title = {Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory},
url = {http://eudml.org/doc/274392},
volume = {17},
year = {2013},
}

TY - JOUR
AU - Di Bernardino, Elena
AU - Laloë, Thomas
AU - Maume-Deschamps, Véronique
AU - Prieur, Clémentine
TI - Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 236
EP - 256
AB - This paper deals with the problem of estimating the level sets L(c) =  {F(x) ≥ c}, with c ∈ (0,1), of an unknown distribution function F on ℝ+2. A plug-in approach is followed. That is, given a consistent estimator Fn of F, we estimate L(c) by Ln(c) =  {Fn(x) ≥ c}. In our setting, non-compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by applications in multivariate risk theory. In particular we propose a new bivariate version of the conditional tail expectation by conditioning the two-dimensional random vector to be in the level set L(c). We also present simulated and real examples which illustrate our theoretical results.
LA - eng
KW - level sets; distribution function; plug-in estimation; Hausdorff distance; conditional tail expectation
UR - http://eudml.org/doc/274392
ER -

References

top
  1. [1] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance9 (1999) 203–228. Zbl0980.91042MR1850791
  2. [2] A. Baíllo, Total error in a plug-in estimator of level sets. Statist. Probab. Lett.65 (2003) 411–417. Zbl1116.62338MR2039885
  3. [3] A. Baíllo, J.A. Cuesta-Albertos and A. Cuevas, Convergence rates in nonparametric estimation of level sets. Statist. Probab. Lett.53 (2001) 27–35. Zbl0980.62022MR1843338
  4. [4] F. Belzunce, A. Castaño, A. Olvera-Cervantes and A. Suárez-Llorens, Quantile curves and dependence structure for bivariate distributions. Comput. Stat. Data Anal.51 (2007) 5112–5129. Zbl1162.62362MR2370711
  5. [5] G. Biau, B. Cadre and B. Pelletier, A graph-based estimator of the number of clusters. ESAIM : PS 11 (2007) 272–280. Zbl1187.62114MR2320821
  6. [6] P. Billingsley, Probability and measure. Wiley Series in Probability and Mathematical Statistics, 3th edition, John Wiley & Sons Inc., A Wiley-Interscience Publication, New York (1995). Zbl0649.60001MR1324786
  7. [7] B. Cadre, Kernel estimation of density level sets. J. Multivar. Anal.97 (2006) 999–1023. Zbl1085.62039MR2256570
  8. [8] J. Cai and H. Li, Conditional tail expectations for multivariate phase-type distributions. J. Appl. Probab.42 (2005) 810–825. Zbl1079.62022MR2157522
  9. [9] L. Cavalier, Nonparametric estimation of regression level sets. Statistics (Berl. DDR) 29 (1997) 131–160. Zbl0899.62045MR1484386
  10. [10] Y.P. Chaubey and P.K. Sen, Smooth estimation of multivariate survival and density functions. J. Statist. Plann. Inference 103 (2002) 361–376; C. R. Rao 80th birthday felicitation volume, Part I. Zbl1003.62031MR1897000
  11. [11] A. Cuevas and R. Fraiman, A plug-in approach to support estimation. Ann. Stat.25 (1997) 2300–2312. Zbl0897.62034MR1604449
  12. [12] A. Cuevas and A. Rodríguez–Casal, On boundary estimation. Adv. Appl. Probab.36 (2004) 340–354. Zbl1045.62019MR2058139
  13. [13] A. Cuevas, W. González-Manteiga and A. Rodríguez–Casal, Plug-in estimation of general level sets. Australian & New Zealand J. Statist. 48 (2006) 7–19. Zbl1108.62036MR2234775
  14. [14] L. de Haan and X. Huang, Large quantile estimation in a multivariate setting. J. Multivar. Anal.53 (1995) 247–263. Zbl0820.62045MR1336056
  15. [15] S. Dedu and R. Ciumara, Restricted optimal retention in stop-loss reinsurance under VaR and CTE risk measures. Proc. of Rom. Acad. Ser. A11 (2010) 213–217. Zbl1324.91014MR2733162
  16. [16] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks. Wiley, (2005). Zbl1086.91035
  17. [17] P. Embrechts and G. Puccetti, Bounds for functions of multivariate risks. J. Multivar. Anal.97 (2006) 526–547. Zbl1089.60016MR2234036
  18. [18] J.M. Fernández-Ponce and A. Suárez-Lloréns, Central regions for bivariate distributions. Austrian J. Stat.31 (2002) 141–156. 
  19. [19] E.W. Frees and E.A. Valdez, Understanding relationships using copulas. North Amer. Actuar. J.2 (1998) 1–25. Zbl1081.62564MR1988432
  20. [20] J.A. Hartigan, Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc.82 (1987) 267–270. Zbl0607.62045MR883354
  21. [21] V.I. Koltchinskii, M-estimation, convexity and quantiles. Ann. Statist.25 (1997) 435–477. Zbl0878.62037MR1439309
  22. [22] T. Laloë, Sur Quelques Problèmes d’Apprentissage Supervisé et Non Supervisé. Ph.D. thesis, University Montpellier II (2009). 
  23. [23] J.-C. Massé and R. Theodorescu, Halfplane trimming for bivariate distributions. J. Multivar. Anal.48 (1994) 188–202. Zbl0790.60024MR1261798
  24. [24] G. Nappo and F. Spizzichino, Kendall distributions and level sets in bivariate exchangeable survival models. Inform. Sci.179 (2009) 2878–2890. Zbl1171.62008MR2547757
  25. [25] W. Polonik, Measuring mass concentrations and estimating density contour clusters – an excess mass approach. Ann. Stat.23 (1995) 855–881. Zbl0841.62045MR1345204
  26. [26] W. Polonik, Minimum volume sets and generalized quantile processes. Stoch. Proc. Appl.69 (1997) 1–24. Zbl0905.62053MR1464172
  27. [27] P. Rigollet and R. Vert, Optimal rates for plug-in estimators of density level sets. Bernoulli.15 (2009) 1154–1178. Zbl1200.62034MR2597587
  28. [28] A. Rodríguez–Casal. Estimacíon de conjuntos y sus fronteras. Un enfoque geometrico. Ph.D. thesis, University of Santiago de Compostela (2003). 
  29. [29] C. Rossi, Sulle curve di livello di una superficie di ripartizione in due variabili; on level curves of two dimensional distribution function. Giornale dell’Istituto Italiano degli Attuari36 (1973) 87–108. Zbl0359.62050
  30. [30] C. Rossi, Proprietà geometriche delle superficie di ripartizione. Rend. Mat. (6) 9 (1976) 725–736 (1977). Zbl0348.60012MR431339
  31. [31] R. Serfling, Quantile functions for multivariate analysis : approaches and applications. Stat. Neerlandica 56 (2002) 214–232 Special issue : Frontier research in theoretical statistics (2000) (Eindhoven). Zbl1076.62054MR1916321
  32. [32] L. Tibiletti, On a new notion of multidimensional quantile. Metron51 (1993) 77–83. Zbl0829.62057MR1337598
  33. [33] A.B. Tsybakov, On nonparametric estimation of density level sets. Ann. Stat.25 (1997) 948–969. Zbl0881.62039MR1447735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.