A Statistical Model of Mesons
Recherche Coopérative sur Programme n°25 (1983)
- Volume: 33, page 1-48
Access Full Article
topHow to cite
topNagasawa, M., and Yasue, K.. "A Statistical Model of Mesons." Recherche Coopérative sur Programme n°25 33 (1983): 1-48. <http://eudml.org/doc/274419>.
@article{Nagasawa1983,
author = {Nagasawa, M., Yasue, K.},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {1-48},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {A Statistical Model of Mesons},
url = {http://eudml.org/doc/274419},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Nagasawa, M.
AU - Yasue, K.
TI - A Statistical Model of Mesons
JO - Recherche Coopérative sur Programme n°25
PY - 1983
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 33
SP - 1
EP - 48
LA - eng
UR - http://eudml.org/doc/274419
ER -
References
top- 1. J. C. Taylor, Gauge Theories of Weak Interactions, (Cambridge University Press, 1976). MR468756
- 2. L. D. Faddeev and A. A. Slavnov, Gauge Fields Introduction to Quantum Theory, (Benjamin, Reading 1980). Zbl0486.53052MR618649
- 3. W. Marciano and H. Pagels, Phys. Rep.36C, 137 (1978).
- 4. D. B. Lichtenberg, Unitary Symmetry and Elementary Particles, (Academic Pres, New York1978). MR269208
- 5. H. Yukawa (Editor), Theory of Elementary Particles Extended in Space-Time, Prog. Theor. Phys. Suppl. No 67 (1979). MR575671
- 6. J. L. Gervais and A. Neveu (Editors), Phys. Rep.23C, 237 (1976).
- 7. One of σ and k (respectively a' and k') is a redundant parameter.
- 8. E. C. Tichmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, I (Oxford, 1962). Zbl0099.05201
- 9. We do not adopt the notion of “mixture of quark states” in this paper. It seems, however, plausible that the decay mode of , indicates the necessity of introducing this notion. If we do so, is a candidate for .
- 10. Compare two functions: and , where , . It is difficult to judge which function approximates the given experimental data better.
- 11. We are assuming that is the smallest -meson, since is the smallest one ever observed by now, although a smaller -meson with spin zero is expected by our composite model.
- 12. For details and other applications of the model, see Nagasawa, M., Segregation of a population in an environment. J. Math. Biology (1980), 9, 213-235 Zbl0447.92017
- Nagasawa, M.An application of the segregation model for septation of Escherichia coli. J. Theor. Biol. (1981), 90, 445-455
- Nagasawa, M.A statistical model of systems of interacting diffusion-particles (in preparation).
- Albeverio, S., Blanchard, Ph., & Høegh-Krohn, R., A stochastic model for the orbits of planets and satellites : An interpretation of Titius-Bode law (preprint). Zbl0533.70006
- 13. In higher dimensions we need duality arguments, which will not come across in one-dimension. See Nagasawa (1980).
- 14. For stochastic differential equations see, e.g. K. Itô and S. Watanabe, Introduction to stochastic differential equations, Proc. of Intern. Symp. SDE Kyoto, 1976 (Ed. by K. Itô) i-xxx, Kinokuniya Book-Store, Co. LTD, Tokyo. Zbl0405.60058
- 15. McKean, H. P. (1966) A class of Markow processes associated with non-linear parabolic equations, Proc. Nat. Acad. Sci.56, 1907-1911. Zbl0149.13501MR221595
- McKean, H. P. (1967) Propagation of chaos for a class of non-linear parabolic equations. Lecture series in differential equations7, Catholoc Univ.41-57. Zbl0181.44401MR233437
- Brown, W. and Hepp, K. (1977), The Vlasov dynamics and its fluctuations in 1/N limit of interacting classical particles, Comm. Math. Phys.56, 101-113. Zbl1155.81383MR475547
- Tanaka, H. (to appear), Limit theorems for certain diffusion processes with interaction, Taniguchi International Symposium, July 1982. Zbl0552.60051MR780770
- Dawson, D. A.Critical dynamics and fluctuations for a mean field model of cooperative behavior. J. of Statistical Physics (1983), 31, 29-85. MR711469
- 16. Time reversal plays an important role in this model, although it is hidden in one dimension. For time reversal of diffusion processes see : Schrödinger, E., Ueber die Umkehrung der Naturgesetze. Berliner Berichte (1931), Sitzung der physikalisch-mathematischen Klasse, 144-153.
- Kolmogoroff, A., Zur Umkehrbarkeit der Statistischen Naturgesetze, Math. Ann.113 (1937), 766-772. Zbl0015.26004MR1513121
- Nagasawa, M., Time reversions of Markov processes, Nagoya Math. Journal24 (1964), 177-204. Zbl0133.10702MR169290
- Chung, K. L. and Walsh, J. B., To reverse a Markov process, Acta Math.123, (1969), 225-251. Zbl0187.41302MR258114
- Mayer, P. A., Le returnement du temps, d'aprés Chung et Walsh, Lecture Notes in Math.191, (1971), 213-245 (Springer). MR383549
- Nagasawa, M. and Maruyama, T., An application of time reversal of Markov processes to a problem of population genetics, Advances in Appl. Probability11, (1979), 457-478. Zbl0406.60070MR533054
- Föllmer, H., On local time and time reversal, Journées de probabilités, 1983, Bern.
- 17. Nagasawa, M., Interacting diffusions and Schrödinger equation. Journées de Probabilités, 1983, Bern.
- Interrelation between Schrödinger équation and diffusion processes has been discussed by Fényes and Nelson, see: Fenyes, I., Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantemechanik, Z. für Physik, 132 (1952), 81-106
- Nelson, E., Derivation of Schrödinger equation from Newtonian Mechanics, Phys. Rev.150 (1966), 1076-1085
- Yasue, K. Stochastic Quantization : A Review, International Journal of Theor. Phys.18 (1979), 861-913. Zbl0435.60003MR574682
- The interpretation of a diffusion process as a typical partiale of a system of interacting particles is different from theirs and was given in Nagasawa (1980).
- 18. See Theorem 6.1 of Nagasawa (1980) (in the proof, (6.11) should be read as , and also Nelson, E., Critical diffusions. Journées de Probabilités, 1983, Bern.
- 19. The following arguments are based on discussions with H. Föllmer.
- 20. For example take , then . Hence, and . The solution of (46) for this is . The solution of (47) for the has a singularity of .
- 21. This is the so called "piecing together (or revival) technique" of the theory of Markov processes. Cf. Theorem 1 and 2 of Nagasawa, M., Basic models of Branching Processes, Proc. of 41st Session of ISI, New Delhi, 1977, XLVII (2), 423-445.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.