A Statistical Model of Mesons

M. Nagasawa; K. Yasue

Recherche Coopérative sur Programme n°25 (1983)

  • Volume: 33, page 1-48

How to cite

top

Nagasawa, M., and Yasue, K.. "A Statistical Model of Mesons." Recherche Coopérative sur Programme n°25 33 (1983): 1-48. <http://eudml.org/doc/274419>.

@article{Nagasawa1983,
author = {Nagasawa, M., Yasue, K.},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {1-48},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {A Statistical Model of Mesons},
url = {http://eudml.org/doc/274419},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Nagasawa, M.
AU - Yasue, K.
TI - A Statistical Model of Mesons
JO - Recherche Coopérative sur Programme n°25
PY - 1983
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 33
SP - 1
EP - 48
LA - eng
UR - http://eudml.org/doc/274419
ER -

References

top
  1. 1. J. C. Taylor, Gauge Theories of Weak Interactions, (Cambridge University Press, 1976). MR468756
  2. 2. L. D. Faddeev and A. A. Slavnov, Gauge Fields Introduction to Quantum Theory, (Benjamin, Reading 1980). Zbl0486.53052MR618649
  3. 3. W. Marciano and H. Pagels, Phys. Rep.36C, 137 (1978). 
  4. 4. D. B. Lichtenberg, Unitary Symmetry and Elementary Particles, (Academic Pres, New York1978). MR269208
  5. 5. H. Yukawa (Editor), Theory of Elementary Particles Extended in Space-Time, Prog. Theor. Phys. Suppl. No 67 (1979). MR575671
  6. 6. J. L. Gervais and A. Neveu (Editors), Phys. Rep.23C, 237 (1976). 
  7. 7. One of σ and k (respectively a' and k') is a redundant parameter. 
  8. 8. E. C. Tichmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, I (Oxford, 1962). Zbl0099.05201
  9. 9. We do not adopt the notion of “mixture of quark states” in this paper. It seems, however, plausible that the decay mode of S * ( 975 ) π π ( 78 ± 3 % ) , K K ( 22 ± 3 % ) indicates the necessity of introducing this notion. If we do so, ( ( s + d ) / 2 , ϕ 8 , 0 , ( s ¯ + d ¯ ) / 2 ) ( 980 ) is a candidate for S * ( 975 )
  10. 10. Compare two functions: J = 1 . 43 x 3 / 4 and J = 0 . 5 + 0 . 86 x , where x = M 2 , 0 l t ; x 5 . It is difficult to judge which function approximates the given experimental data better. 
  11. 11. We are assuming that ( b , ϕ 74 , b ¯ ) is the smallest ( b , b ¯ ) -meson, since γ ( 1 ) ( 9458 ) is the smallest one ever observed by now, although a smaller ( b , b ¯ ) -meson with spin zero is expected by our composite model. 
  12. 12. For details and other applications of the model, see Nagasawa, M., Segregation of a population in an environment. J. Math. Biology (1980), 9, 213-235 Zbl0447.92017
  13. Nagasawa, M.An application of the segregation model for septation of Escherichia coli. J. Theor. Biol. (1981), 90, 445-455 
  14. Nagasawa, M.A statistical model of systems of interacting diffusion-particles (in preparation). 
  15. Albeverio, S., Blanchard, Ph., & Høegh-Krohn, R., A stochastic model for the orbits of planets and satellites : An interpretation of Titius-Bode law (preprint). Zbl0533.70006
  16. 13. In higher dimensions we need duality arguments, which will not come across in one-dimension. See Nagasawa (1980). 
  17. 14. For stochastic differential equations see, e.g. K. Itô and S. Watanabe, Introduction to stochastic differential equations, Proc. of Intern. Symp. SDE Kyoto, 1976 (Ed. by K. Itô) i-xxx, Kinokuniya Book-Store, Co. LTD, Tokyo. Zbl0405.60058
  18. 15. McKean, H. P. (1966) A class of Markow processes associated with non-linear parabolic equations, Proc. Nat. Acad. Sci.56, 1907-1911. Zbl0149.13501MR221595
  19. McKean, H. P. (1967) Propagation of chaos for a class of non-linear parabolic equations. Lecture series in differential equations7, Catholoc Univ.41-57. Zbl0181.44401MR233437
  20. Brown, W. and Hepp, K. (1977), The Vlasov dynamics and its fluctuations in 1/N limit of interacting classical particles, Comm. Math. Phys.56, 101-113. Zbl1155.81383MR475547
  21. Tanaka, H. (to appear), Limit theorems for certain diffusion processes with interaction, Taniguchi International Symposium, July 1982. Zbl0552.60051MR780770
  22. Dawson, D. A.Critical dynamics and fluctuations for a mean field model of cooperative behavior. J. of Statistical Physics (1983), 31, 29-85. MR711469
  23. 16. Time reversal plays an important role in this model, although it is hidden in one dimension. For time reversal of diffusion processes see : Schrödinger, E., Ueber die Umkehrung der Naturgesetze. Berliner Berichte (1931), Sitzung der physikalisch-mathematischen Klasse, 144-153. 
  24. Kolmogoroff, A., Zur Umkehrbarkeit der Statistischen Naturgesetze, Math. Ann.113 (1937), 766-772. Zbl0015.26004MR1513121
  25. Nagasawa, M., Time reversions of Markov processes, Nagoya Math. Journal24 (1964), 177-204. Zbl0133.10702MR169290
  26. Chung, K. L. and Walsh, J. B., To reverse a Markov process, Acta Math.123, (1969), 225-251. Zbl0187.41302MR258114
  27. Mayer, P. A., Le returnement du temps, d'aprés Chung et Walsh, Lecture Notes in Math.191, (1971), 213-245 (Springer). MR383549
  28. Nagasawa, M. and Maruyama, T., An application of time reversal of Markov processes to a problem of population genetics, Advances in Appl. Probability11, (1979), 457-478. Zbl0406.60070MR533054
  29. Föllmer, H., On local time and time reversal, Journées de probabilités, 1983, Bern. 
  30. 17. Nagasawa, M., Interacting diffusions and Schrödinger equation. Journées de Probabilités, 1983, Bern. 
  31. Interrelation between Schrödinger équation and diffusion processes has been discussed by Fényes and Nelson, see: Fenyes, I., Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantemechanik, Z. für Physik, 132 (1952), 81-106 
  32. Nelson, E., Derivation of Schrödinger equation from Newtonian Mechanics, Phys. Rev.150 (1966), 1076-1085 
  33. Yasue, K. Stochastic Quantization : A Review, International Journal of Theor. Phys.18 (1979), 861-913. Zbl0435.60003MR574682
  34. The interpretation of a diffusion process as a typical partiale of a system of interacting particles is different from theirs and was given in Nagasawa (1980). 
  35. 18. See Theorem 6.1 of Nagasawa (1980) (in the proof, (6.11) should be read as ψ β 2 = 0 ( 1 ) , and also Nelson, E., Critical diffusions. Journées de Probabilités, 1983, Bern. 
  36. 19. The following arguments are based on discussions with H. Föllmer. 
  37. 20. For example take ϕ = c x 2 e - x 2 , then 1 2 1 ϕ ϕ ' = - x + 1 x . Hence, b 1 ( x ) = - x and b 2 ( x ) = 1 x . The solution of (46) for this b 1 ( x ) is h ( x ) = - x . The solution h 2 ( x ) of (47) for the b 2 ( x ) has a singularity of x - 4
  38. 21. This is the so called "piecing together (or revival) technique" of the theory of Markov processes. Cf. Theorem 1 and 2 of Nagasawa, M., Basic models of Branching Processes, Proc. of 41st Session of ISI, New Delhi, 1977, XLVII (2), 423-445. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.