Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes
Publications mathématiques et informatique de Rennes (1993)
- Issue: 2, page 1-19
Access Full Article
topHow to cite
topDehay, Dominique. "Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes." Publications mathématiques et informatique de Rennes (1993): 1-19. <http://eudml.org/doc/274440>.
@article{Dehay1993,
author = {Dehay, Dominique},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {spectral density; periodogram; signal theory; cyclic covariance functions; zero mean second order stochastic processes; Fourier series decomposition; almost periodically correlated processes; strongly harmonizable processes; variance; consistency; stochastic spectral measure; mixing condition},
language = {eng},
number = {2},
pages = {1-19},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes},
url = {http://eudml.org/doc/274440},
year = {1993},
}
TY - JOUR
AU - Dehay, Dominique
TI - Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes
JO - Publications mathématiques et informatique de Rennes
PY - 1993
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 2
SP - 1
EP - 19
LA - eng
KW - spectral density; periodogram; signal theory; cyclic covariance functions; zero mean second order stochastic processes; Fourier series decomposition; almost periodically correlated processes; strongly harmonizable processes; variance; consistency; stochastic spectral measure; mixing condition
UR - http://eudml.org/doc/274440
ER -
References
top- [1] R. C. Bradley and M. Peligrad (1986), Invariance principle under a two part mixing assumption. Stochastic Process. Appl.22, 271-289 Zbl0609.60048MR860937
- [2] R. A. Boyles and W. A. Gardner (1983), Cycloergodic properties of discrete-parameter nonstationary stochastic processes, IEEE Transactions on Information Theory IT-29 (1), 105-114. Zbl0513.60045MR711279
- [3] C. Corduneanu (1961), Almost periodic functions, Wiley (New York). Zbl0175.09101MR481915
- [4] D. Dehay (1991), On the product of two harmonizable processes, Stochastic Process. Appl.39, 347-358 Zbl0728.60032MR1119989
- [5] D. Dehay (1992), Estimation de paramètres fonctionnels spectraux de certains processus non-nécessairement stationnaires, Comptes Rendus de l'Académie des Sciences de Paris, 314 (4), 313-316. Zbl0742.62089MR1151721
- [6] D. Dehay (1994), Spectral analysis of the covariance of the almost periodically correlated processes, to appear in Stochastic Process. Appl. Zbl0793.62050MR1273778
- [7] D. Dehay and A. Loughani (1994), Locally harmonizable covariances: spectral analysis, to appear in Kybernetika. Zbl0826.60028MR1314350
- [8] D. Dehay and R. Moché (1992), Trace measures of a positive definite bimeasure, J. Multivariate Anal.40, 115-131. Zbl0745.60033MR1149255
- [9] R. M. Dudley and L. Pakula (1972), A counter example of the inner product of measures, Indiana Univ. Math. J.21, 843-845 Zbl0221.28003MR296245
- [10] N. Dunford and J. T. Schwartz (1957), Linear operators, parts I and II: general theory, Interscience Pub. (New York). Zbl0084.10402MR1009162
- [11] W. A. Gardner (1985), Introduction to random processes with applications to signals and systems, Macmillan (New York), 2nd ed. 1989McGraw-Hill. Zbl0656.60044
- [12] W. A. Gardner (1988), Correlation estimation and time series modeling for nonstationary processes, Signal Processing15, 31-41 MR952544
- [13] W. A. Gardner (1994), Cyclostationarity in communications and signal processing, IEEE Press (New York). Zbl0823.00029
- [14] E. Gladyshev (1963), Periodically and almost periodically correlated random processes with continuous time parameter, Th. Probability Appl.8, 173-177. Zbl0138.11003MR152005
- [15] C. Hipp (1979), Convergence rates of the strong law for stationary mixing sequences, Z. Wahrscheinlichkeitstheorie verw. Gebiete49, 49-62. Zbl0377.60035MR539664
- [16] J. E. Huneycutt (1972), Products and convolutions of vector valued set functions, Studia Math.41, 119-129. Zbl0233.28013MR302855
- [17] H. L. Hurd (1989), Nonparametric time series analysis for periodically correlated processes, IEEE Transactions on Information Theory IT-35 (2), 350-359. Zbl0672.62096MR999650
- [18] H. L. Hurd (1991), Correlation theory for the almost periodically correlated processes with continuous time parameter, J. Multivariate Anal.37 (1), 24-45 Zbl0721.60045MR1097303
- [19] H. L. Hurd and Leskow, J. (1992), Estimation of the Fourier coefficient functions and their spectral densities for ɸ-mixing almost periodically correlated processes, Statistics and Probability Letters14 (4), 299-306. Zbl0752.62067MR1179631
- [20] H. L. Hurd and J. Leskow (1992), Strongly consistent and asymptotically normal estimation of the covariance for almost periodically correlated processes, Statistics and Decisions10, 201-225 Zbl0757.62045MR1183203
- [21] J. Leskow (1992), An asymptotic normality of the spectral density estimators for almost periodically correlated stochatic processes, preprint. Zbl0805.62086MR1290703
- [22] M. Peligrad (1992), On the central limit theorem for weakly dependent sequences with a decomposed strong mixing coefficient, Stochastic Process. Appl.42, 181-193 Zbl0757.60028MR1176496
- [23] R. S. Phillips (1950), On Fourier Stieltjes integrals, Trans. Amer. Math. Soc.69, 312-323. Zbl0039.33101MR39106
- [24] M. M. Rao (1985), Harmonizable, Cramér, and Karhunen classes of processes, Handbook of Statistics5, 279-310, Elsevier Science Publ. MR831752
- [25] Yu. A. Rozanov (1959), Spectral analysis of abstract function, Th. Probability Appl.4, 271-287. Zbl0089.32602MR117791
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.