Products of Random Weights Indexed by Galton-Watson Trees

Quansheng Liu

Publications mathématiques et informatique de Rennes (1996-1997)

  • Issue: 2, page 1-24

How to cite

top

Liu, Quansheng. "Products of Random Weights Indexed by Galton-Watson Trees." Publications mathématiques et informatique de Rennes (1996-1997): 1-24. <http://eudml.org/doc/274473>.

@article{Liu1996-1997,
author = {Liu, Quansheng},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {self-similar cascades; branching random walk; functional equations; moments; tails; continuity},
language = {eng},
number = {2},
pages = {1-24},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Products of Random Weights Indexed by Galton-Watson Trees},
url = {http://eudml.org/doc/274473},
year = {1996-1997},
}

TY - JOUR
AU - Liu, Quansheng
TI - Products of Random Weights Indexed by Galton-Watson Trees
JO - Publications mathématiques et informatique de Rennes
PY - 1996-1997
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 2
SP - 1
EP - 24
LA - eng
KW - self-similar cascades; branching random walk; functional equations; moments; tails; continuity
UR - http://eudml.org/doc/274473
ER -

References

top
  1. Athreya, K.B. (1971) : A note on a functional equation arising in Galton-Watson branching processes. J. Appl. Prob., 8, 589-598. Zbl0254.60058MR292184
  2. Athreya, K.B. and Ney, P.E. (1972) : Branching processes. Springer, Berlin. Zbl0259.60002MR373040
  3. Barrai J. (1997): Continuté, Moments d'ordres négatifs et Analyse Multifractale de cascades multiplicatives de Mandelbrot. Thèse, Univ. Paris-Sud, Orsay. 
  4. Ben Nasr, F. (1987) : Mesures aléatoires de Mandelbrot associées à des substitutions. CRAS, Sér. I, 304, 255-258. Zbl0635.60052MR882783
  5. Biggins, J.D. (1977) : Martingale convergence in the branching random walk. J. Appl. Prob.14, 25-37. Zbl0356.60053MR433619
  6. Biggins, J.D. and Bingham, N.H. (1993) : Large deviations in the supercritical branching process. Adv. Appl. Prob.25, 757-772. Zbl0796.60090MR1241927
  7. Bingham, N.H. and Doney, R.A. (1974): Asymptotic properties of supercritical ranching processes I: The Galton-Watson process. Adv. Appl. Prob., 6, 711-731. Zbl0297.60044MR362525
  8. Bingham, N.H. and Doney, R.A. (1975): Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes. Adv. Appl. Prob., 7, 66-82. Zbl0308.60049MR378125
  9. Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) : Regular variation. Cambridge: Cambridge University Press. Zbl0617.26001MR898871
  10. Chauvin, B. and Rouault, A. (1996) Boltzmann-Gibbs weights in the branching random walk. IMA Congress on Branching Processes n°84. Lecture Notes in Maths. Zbl0866.60074MR1601693
  11. Collet, P. and Koukiou, F. (1992) : Large deviations for multiplicative chaos. Comm. Math. Phys.147, 329-342. Zbl0755.60022MR1174416
  12. Crump, K. and Mode, C.J. (1968-1969) : A general age-dependent branching processJ. Math. Anal. Appl., 24, 497-508 and 25, 8-17. Zbl0201.19202MR237005
  13. Doney, R.A. (1972) : A limit theorem for a class of supercritical branching processes. J. Appl. Prob., 9, 707-724. Zbl0267.60082MR348853
  14. Doney, R.A. (1973) : On a functional equation for general branching processes. J. Appl. Prob., 10, 497-508. Zbl0258.60060MR350883
  15. Durrett, R. and Liggett, T. (1983) : Fixed points of the smoothing transformation. Z. Wahrsch. verw. Gebeite, 64, 275-301. Zbl0506.60097MR716487
  16. Falconer, K.J. (1986) : Random fractals. Math.Proc.Camb.Phil.Soc, 100, 559-582. Zbl0623.60020MR857731
  17. Falconer, K.J. (1987) : Cut set sums and tree processes. Proc. Amer. Math. Soc. (2), 101, 337-346. Zbl0636.90031MR902553
  18. Feller, W. (1970): An introduction to probability theory and its applications, vol.11, 2nd. ed. John Wiley & Sons, New York. Zbl0039.13201MR88081
  19. Graf, S. Mauldin, R.D, and Williams, S.C. (1988) : The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc.71, 381. Zbl0641.60003MR920961
  20. Grintsevichyus, A.K. (1974): On the continuity of a sum of dependent variables connected with independent walks on lines. Theory Prob. Appl.19, 163-168. Zbl0321.60053MR345178
  21. Grintsevichyus (1975): One limit distribution for a random walk on the line. Lithunian Math. Trans.15, 580-589. Zbl0373.60009
  22. Guivarc'h, Y. (1990) : Sur une extension de la notion de loi semi-stable. Ann. IHP26, 261-285. Zbl0703.60012MR1063751
  23. Harris, T.E. (1948) : Branching processes, Ann. Math. Stat.19, 474-494. Zbl0041.45603MR27465
  24. Holley, R. and Liggett, T. (1981) : Generalized potlach and smoothing processes. Z. Wahrsch. verw. Gebeite, 55, 165-195. Zbl0441.60096MR608015
  25. Holley, R. and Waymire, E.C. (1992) : Multifractal dimensions and scaling exponents for strongly bounded cascades. Ann. Appl. Prob.2, 819-845. Zbl0786.60064MR1189419
  26. Kahane, J.P. (1987) : Multiplications aléatoires et dimension de Hausdorff. Ann. IHP, Sup. au no. 2, vol. 23, 289-296. Zbl0619.60005MR898497
  27. Kahane, J.P. and Peyrière (1976) : Sur certaines martingales de Benoit Mandelbrot. Adv. Math., 22, 131-145. Zbl0349.60051MR431355
  28. Kesten, H. (1973): Random difference equations and renewal theory for products of random matrices. Acta Math.131, 207-248. Zbl0291.60029MR440724
  29. Kesten, H and Stigum, B.P. (1966): A limit theorem for multidimensional Galton- Watson processes. Ann. Math. Statist.37, 1211-1223. Zbl0203.17401MR198552
  30. Liu, Q. (1993) : Sur quelques problèmes à propos des processus de branchement, des flots dans les réseaux et des mesures de Hausdorff associées. Thèse, Université Paris 6. 
  31. Liu, Q. (1996): The exact Hausdorff dimension of a branching set. Prob. Th. Rel. Fields, 104; 1996, 515-538. Zbl0842.60084MR1384044
  32. Liu, Q. (1996): The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale. In Trees. Progress in Probability, vol.40, pp 51-80, 1996, Birkhöuser: Verlag Basel. Eds.: B.Chauvin, S.Cohen, A.Rouault. Zbl0864.60012MR1439972
  33. Liu, Q. (1997a) : Sur une équation fonctionnelle et ses applications : une extension du théorème de Kesten-Stigum concernant des processus de branchement. To appear in Adv. Appl. Prob.1997. Zbl0901.60055MR1450934
  34. Liu, Q. (1997b) : Fixed points of a generalized smoothing transformation and applications to branching processes. To appear in Adv. Appl. Prob.1997. Zbl0909.60075MR1396815
  35. Liu, Q and Rouault, A. (1996): On two measures defined on the boundary of a branching tree. In "Classical and modern branching processes", ed. K.B. Athreya and P. Jagers. IMA Volumes in Mathematics and its applications, vol. 84, 1996, pp. 187-202. Springer-Verlag. Zbl0867.60065MR1601741
  36. Mandelbrot, B. (1974) : Multiplications aléatoires et distributions invariantes par moyenne pondérée aléatoire. CRASParis vol. 278, 325-346 et 355-358. Zbl0276.60097MR431352
  37. Mauldin, R.A. and Williams, S.C. (1986) : Random constructions, asymptotic geometric and topological properties. Trans. Amer. Math. Soc.295, 325-346. Zbl0625.54047MR831202
  38. Seneta, E. (1968) : On recent theorems concerning the supercritical Galton- Watson process. Ann. Math. Stat.39, 2098-2102. Zbl0176.47603MR234530
  39. Seneta, E. (1969) : Functional equations and the Galton-Watson process. Adv. Appl. Prob.1, 1-42. Zbl0183.46105MR248917
  40. Waymire, E.C. and Williams, S.C. (1995) : Multiplicative cascades : dimension spectra and dependence. J. of Fourier Analysis and Appl., Kahane Special Issue. Zbl0889.60050MR1364911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.