A Bound on the Total Number of Bound States in a Potential
Recherche Coopérative sur Programme n°25 (1976)
- Volume: 23, page 22-41
Access Full Article
topHow to cite
topMartin, A.. "A Bound on the Total Number of Bound States in a Potential." Recherche Coopérative sur Programme n°25 23 (1976): 22-41. <http://eudml.org/doc/274478>.
@article{Martin1976,
author = {Martin, A.},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {22-41},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {A Bound on the Total Number of Bound States in a Potential},
url = {http://eudml.org/doc/274478},
volume = {23},
year = {1976},
}
TY - JOUR
AU - Martin, A.
TI - A Bound on the Total Number of Bound States in a Potential
JO - Recherche Coopérative sur Programme n°25
PY - 1976
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 23
SP - 22
EP - 41
LA - eng
UR - http://eudml.org/doc/274478
ER -
References
top- [1] V. Glaser, H. Grosse, A. Martin and W. Thirring, CERN Preprint TH. 2027 (1975) to be published, referred to as GGMT.
- [2] J. Schwinger, Proc. Nat. Acad. Sci. (US) 47122 (1961). MR129798
- M.S. Birman, Mat. Sb.55, 175 (1961) - [English translation AMS Trans. 53, 23 (1966) ]. MR142896
- [3] See for instance : S. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1970), pp. 117 and 272. Zbl0207.13501MR290095
- [4] A. Martin, Helv. Phys. Acta45, 142 (1972) ;
- H. Tamura, Proc. Japan Acad.50, 19 (1974). Zbl0312.35058MR364899
- [5] B. Simon, weak trace ideals and the spectrum of Schrödinger operatorsPrinceton preprint (1975).
- [6] B. Simon, J. Math. Phys.10, 1123 (1969)·
- [7] J.M. Luttinger and R. Friedberg, quoted in : J.M. Luttinger, J.M.P.14, 1450 (1973).
- [8] G. Szegö, Orthogonal polynomials, Ann. Math. Soc.Colloquium publications, 3rd edition (1966), p. 58.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.