Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques

The Lai Pham

Publications mathématiques et informatique de Rennes (1976)

  • Issue: 1, page 1-59

How to cite

top

Pham, The Lai. "Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques." Publications mathématiques et informatique de Rennes (1976): 1-59. <http://eudml.org/doc/274513>.

@article{Pham1976,
author = {Pham, The Lai},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {1},
pages = {1-59},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques},
url = {http://eudml.org/doc/274513},
year = {1976},
}

TY - JOUR
AU - Pham, The Lai
TI - Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques
JO - Publications mathématiques et informatique de Rennes
PY - 1976
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 1
EP - 59
LA - fre
UR - http://eudml.org/doc/274513
ER -

References

top
  1. (1) S. Agmon - Y. Kannai, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math, 5 (1967), 1-30. Zbl0148.13003MR218730
  2. (2) R. Beals, Spacially inhomogeneous pseudo-differential operator II, Comm. Pure Appl. Math, 27 (1974), 161-205. Zbl0283.35071MR467397
  3. (3) R. Beals - C. Fefferman, Spatially inhomogeneous pseudo-differential operator I, Comm. Pure Appl. Math., 27 (1974), 1-24. Zbl0279.35071MR352747
  4. (4) G. Eskin, Asymptotics near the boundary of spectral functions of elliptic self-adjoint boundary problems, Israel J. Math.22 (1975), 214-246. Zbl0341.35061MR390544
  5. (5) L. Hörmander, Pseudo-differential operrators and hypoelliptic equations, Amer. Math. Soc. Proc. Symp. Pure Math., 10 (1966), 138-183, Zbl0167.09603MR383152
  6. (6) L. Hörmander. The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. Zbl0164.13201MR609014
  7. (7) Y. Kannai, On the asymptotic behavior of resolvents kernels, spectral functions and eigenvalues of semi-elliptic systems, Annali Sc. Norm. Sup. Pisa, 23 (1969), 563-634. Zbl0193.07301MR415092
  8. (8) J. Milnor, Singular points of complex hypersurfaces, Princeton Univ. Press, Ann. Math. Studies, 61 (1968). Zbl0184.48405MR239612
  9. (9) N. Nilsson, Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators, Math. Scand., 9 (1961), 107-121. Zbl0098.06801MR124612
  10. (10) N. Nilsson, Asymptotic estimates for Spectral functions connected with hypoelliptic differential operators, Arch. för Math., 35 (1964), 527-540. Zbl0144.36302MR218931
  11. (11) N. Nilsson, Some estimates for spectral functions connected with formally hypoeltiptic differential operators, Arch. för Math., 10 (1972), 251-275. Zbl0245.35063MR320503
  12. (12) Pham The Lai, Comportement asymptotique du noyau de la résolvante et des valeurs propres d'un opérateur elliptique non nécessairement auto-adjoint, à paraître dans Israel J. Math. Zbl0339.35037
  13. (13) S. A. Smagin, Fractional powers of an hypoelliptic operator in Rn, Soviet Math. Dokl., 14 (1973), 585-588. Zbl0299.58012
  14. (14) A. Tsutsumi, On the asymptotic behaviour. of resolvant kernels and spectral functions for some class of hypoelliptic operators, J. Diff. Eq., 18 (1975), 366-385. Zbl0301.35007MR387840

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.