Éléments finis équilibre pour les plaques plastiques

Bertrand Mercier

Publications mathématiques et informatique de Rennes (1978)

  • Issue: S4, page 1-14

How to cite

top

Mercier, Bertrand. "Éléments finis équilibre pour les plaques plastiques." Publications mathématiques et informatique de Rennes (1978): 1-14. <http://eudml.org/doc/274562>.

@article{Mercier1978,
author = {Mercier, Bertrand},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-14},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Éléments finis équilibre pour les plaques plastiques},
url = {http://eudml.org/doc/274562},
year = {1978},
}

TY - JOUR
AU - Mercier, Bertrand
TI - Éléments finis équilibre pour les plaques plastiques
JO - Publications mathématiques et informatique de Rennes
PY - 1978
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/274562
ER -

References

top
  1. [1] Hellan, K. , Analysis of elastic plates in flexure by a simplified finite element method, Acta Polytechnica Scandinavia, Ci. Ser., 46 (1967). Zbl0237.73046
  2. [2] Herrmann, L.R. , Finite element bending analysis for plates, J. Engr. Mech. Div.ASCE, EM5, a3 (1967), 49-83. 
  3. [3] Johnson, C.On the convergence of some mixed finite element methods for plate bending problems, Num. Math., 21 (1973), 43-62. Zbl0264.65070MR388807
  4. [4] Brezzi, F., Raviart, P.A., Mixed finite element methods for fourth order problems, in "Topics in Numerical AnalysisIII", J. Miller, ed., Academic Press, 1976. Zbl0434.65085
  5. [5] Brezzi, F., Johnson, C., Mercier, B., Analysis of a mixed finite element method for elasto-plastic plates, Math. Comp. , 31 (1977), n° 140. Zbl0386.73074MR443373
  6. [6] Mercier, B. , Une méthode pour résoudre le problème des charges limites, J. de Mécanique, 16 (1977), n° 3. Zbl0363.73031MR471556
  7. [7] Mercier, B., Sur la théorie et l'analyse numérique de problèmes deplasticité, Thèse, Université de Paris VI, 1977. MR502686
  8. [8] Hellan, K. , On the unity of the constant strain/constant moment finite element methods, Int. J . Num. Meth. Eng., 6 (1973), 191-200. Zbl0252.73056
  9. [9] Backlund, J., Mixed finite element analysts of elasto-plastic plates in bending, Arch. Mech. Sto., 24 (1972), 319-355. Zbl0238.73029
  10. [10] Backlund, J., Mixed finite element analysis of plates In bending. Small deflection theory of elastic and elasto-plastic plates, Chalmers Univ. of Technology, Dpt of Struct. Mech., Publ.71/4, Göteborg, 1971. 
  11. [11] Zienkiewicz, O.C., The finite element method in engineering science, MC Graw Hill, 1971. Zbl0237.73071
  12. [12] Johnson, C.On finite element methods for plasticity problems, Num. Math., 26 (1976), 431-444. Zbl0355.73035
  13. [13] Nguyen, Q.S., On the elastic plastic initial-boundary value problem and its numerical integration, Int. J . Num. Meth. Eng., 11 (1977), 817-833 Zbl0366.73034MR446041
  14. [14] Lemarechal, C., An extension of Vavidon methods to non-differentiable functions, Math. Prog. Study, 3 (1976). Zbl0358.90051
  15. [15] Mercier, B., à paraitre. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.